ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mprgbir Unicode version

Theorem mprgbir 2564
Description: Modus ponens on biconditional combined with restricted generalization. (Contributed by NM, 21-Mar-2004.)
Hypotheses
Ref Expression
mprgbir.1  |-  ( ph  <->  A. x  e.  A  ps )
mprgbir.2  |-  ( x  e.  A  ->  ps )
Assertion
Ref Expression
mprgbir  |-  ph

Proof of Theorem mprgbir
StepHypRef Expression
1 mprgbir.2 . . 3  |-  ( x  e.  A  ->  ps )
21rgen 2559 . 2  |-  A. x  e.  A  ps
3 mprgbir.1 . 2  |-  ( ph  <->  A. x  e.  A  ps )
42, 3mpbir 146 1  |-  ph
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105    e. wcel 2176   A.wral 2484
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-gen 1472
This theorem depends on definitions:  df-bi 117  df-ral 2489
This theorem is referenced by:  ss2rabi  3275  rabnc  3493  ssintub  3903  tron  4430  djussxp  4824  dmiin  4925  dfco2  5183  coiun  5193  tfrlem6  6404  oacl  6548  sbthlem1  7061  peano1nnnn  7967  renfdisj  8134  1nn  9049  ioomax  10072  iccmax  10073  xnn0nnen  10584  fxnn0nninf  10586  fisumcom2  11782  fprodcom2fi  11970  bezoutlemmain  12352  dfphi2  12575  unennn  12801  znnen  12802  istopon  14518  neipsm  14659  lgsquadlem2  15588  bj-omtrans2  15930  nninfomnilem  15992  exmidsbthrlem  15998
  Copyright terms: Public domain W3C validator