ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mprgbir Unicode version

Theorem mprgbir 2555
Description: Modus ponens on biconditional combined with restricted generalization. (Contributed by NM, 21-Mar-2004.)
Hypotheses
Ref Expression
mprgbir.1  |-  ( ph  <->  A. x  e.  A  ps )
mprgbir.2  |-  ( x  e.  A  ->  ps )
Assertion
Ref Expression
mprgbir  |-  ph

Proof of Theorem mprgbir
StepHypRef Expression
1 mprgbir.2 . . 3  |-  ( x  e.  A  ->  ps )
21rgen 2550 . 2  |-  A. x  e.  A  ps
3 mprgbir.1 . 2  |-  ( ph  <->  A. x  e.  A  ps )
42, 3mpbir 146 1  |-  ph
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105    e. wcel 2167   A.wral 2475
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-gen 1463
This theorem depends on definitions:  df-bi 117  df-ral 2480
This theorem is referenced by:  ss2rabi  3266  rabnc  3484  ssintub  3893  tron  4418  djussxp  4812  dmiin  4913  dfco2  5170  coiun  5180  tfrlem6  6383  oacl  6527  sbthlem1  7032  peano1nnnn  7936  renfdisj  8103  1nn  9018  ioomax  10040  iccmax  10041  xnn0nnen  10546  fxnn0nninf  10548  fisumcom2  11620  fprodcom2fi  11808  bezoutlemmain  12190  dfphi2  12413  unennn  12639  znnen  12640  istopon  14333  neipsm  14474  lgsquadlem2  15403  bj-omtrans2  15687  nninfomnilem  15749  exmidsbthrlem  15753
  Copyright terms: Public domain W3C validator