ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mprgbir Unicode version

Theorem mprgbir 2524
Description: Modus ponens on biconditional combined with restricted generalization. (Contributed by NM, 21-Mar-2004.)
Hypotheses
Ref Expression
mprgbir.1  |-  ( ph  <->  A. x  e.  A  ps )
mprgbir.2  |-  ( x  e.  A  ->  ps )
Assertion
Ref Expression
mprgbir  |-  ph

Proof of Theorem mprgbir
StepHypRef Expression
1 mprgbir.2 . . 3  |-  ( x  e.  A  ->  ps )
21rgen 2519 . 2  |-  A. x  e.  A  ps
3 mprgbir.1 . 2  |-  ( ph  <->  A. x  e.  A  ps )
42, 3mpbir 145 1  |-  ph
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 104    e. wcel 2136   A.wral 2444
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-gen 1437
This theorem depends on definitions:  df-bi 116  df-ral 2449
This theorem is referenced by:  ss2rabi  3224  rabnc  3441  ssintub  3842  tron  4360  djussxp  4749  dmiin  4850  dfco2  5103  coiun  5113  tfrlem6  6284  oacl  6428  sbthlem1  6922  peano1nnnn  7793  renfdisj  7958  1nn  8868  ioomax  9884  iccmax  9885  fxnn0nninf  10373  fisumcom2  11379  fprodcom2fi  11567  bezoutlemmain  11931  dfphi2  12152  unennn  12330  znnen  12331  istopon  12651  neipsm  12794  bj-omtrans2  13839  nninfomnilem  13898  exmidsbthrlem  13901
  Copyright terms: Public domain W3C validator