Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > supubti | Unicode version |
Description: A supremum is an upper
bound. See also supclti 6971 and suplubti 6973.
This proof demonstrates how to expand an iota-based definition (df-iota 5158) using riotacl2 5819. (Contributed by Jim Kingdon, 24-Nov-2021.) |
Ref | Expression |
---|---|
supmoti.ti | |
supclti.2 |
Ref | Expression |
---|---|
supubti |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl 108 | . . . . 5 | |
2 | 1 | a1i 9 | . . . 4 |
3 | 2 | ss2rabi 3229 | . . 3 |
4 | supmoti.ti | . . . . 5 | |
5 | supclti.2 | . . . . 5 | |
6 | 4, 5 | supval2ti 6968 | . . . 4 |
7 | 4, 5 | supeuti 6967 | . . . . 5 |
8 | riotacl2 5819 | . . . . 5 | |
9 | 7, 8 | syl 14 | . . . 4 |
10 | 6, 9 | eqeltrd 2247 | . . 3 |
11 | 3, 10 | sselid 3145 | . 2 |
12 | breq2 3991 | . . . . . . 7 | |
13 | 12 | notbid 662 | . . . . . 6 |
14 | 13 | cbvralv 2696 | . . . . 5 |
15 | breq1 3990 | . . . . . . 7 | |
16 | 15 | notbid 662 | . . . . . 6 |
17 | 16 | ralbidv 2470 | . . . . 5 |
18 | 14, 17 | syl5bb 191 | . . . 4 |
19 | 18 | elrab 2886 | . . 3 |
20 | 19 | simprbi 273 | . 2 |
21 | breq2 3991 | . . . 4 | |
22 | 21 | notbid 662 | . . 3 |
23 | 22 | rspccv 2831 | . 2 |
24 | 11, 20, 23 | 3syl 17 | 1 |
Colors of variables: wff set class |
Syntax hints: wn 3 wi 4 wa 103 wb 104 wceq 1348 wcel 2141 wral 2448 wrex 2449 wreu 2450 crab 2452 class class class wbr 3987 crio 5805 csup 6955 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-rex 2454 df-reu 2455 df-rmo 2456 df-rab 2457 df-v 2732 df-sbc 2956 df-un 3125 df-in 3127 df-ss 3134 df-sn 3587 df-pr 3588 df-op 3590 df-uni 3795 df-br 3988 df-iota 5158 df-riota 5806 df-sup 6957 |
This theorem is referenced by: suplub2ti 6974 supisoti 6983 inflbti 6997 suprubex 8854 zsupcl 11889 dvdslegcd 11906 |
Copyright terms: Public domain | W3C validator |