| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > supubti | Unicode version | ||
| Description: A supremum is an upper
bound.  See also supclti 7064 and suplubti 7066.
 This proof demonstrates how to expand an iota-based definition (df-iota 5219) using riotacl2 5891. (Contributed by Jim Kingdon, 24-Nov-2021.)  | 
| Ref | Expression | 
|---|---|
| supmoti.ti | 
 | 
| supclti.2 | 
 | 
| Ref | Expression | 
|---|---|
| supubti | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | simpl 109 | 
. . . . 5
 | |
| 2 | 1 | a1i 9 | 
. . . 4
 | 
| 3 | 2 | ss2rabi 3265 | 
. . 3
 | 
| 4 | supmoti.ti | 
. . . . 5
 | |
| 5 | supclti.2 | 
. . . . 5
 | |
| 6 | 4, 5 | supval2ti 7061 | 
. . . 4
 | 
| 7 | 4, 5 | supeuti 7060 | 
. . . . 5
 | 
| 8 | riotacl2 5891 | 
. . . . 5
 | |
| 9 | 7, 8 | syl 14 | 
. . . 4
 | 
| 10 | 6, 9 | eqeltrd 2273 | 
. . 3
 | 
| 11 | 3, 10 | sselid 3181 | 
. 2
 | 
| 12 | breq2 4037 | 
. . . . . . 7
 | |
| 13 | 12 | notbid 668 | 
. . . . . 6
 | 
| 14 | 13 | cbvralv 2729 | 
. . . . 5
 | 
| 15 | breq1 4036 | 
. . . . . . 7
 | |
| 16 | 15 | notbid 668 | 
. . . . . 6
 | 
| 17 | 16 | ralbidv 2497 | 
. . . . 5
 | 
| 18 | 14, 17 | bitrid 192 | 
. . . 4
 | 
| 19 | 18 | elrab 2920 | 
. . 3
 | 
| 20 | 19 | simprbi 275 | 
. 2
 | 
| 21 | breq2 4037 | 
. . . 4
 | |
| 22 | 21 | notbid 668 | 
. . 3
 | 
| 23 | 22 | rspccv 2865 | 
. 2
 | 
| 24 | 11, 20, 23 | 3syl 17 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:    | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 | 
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-reu 2482 df-rmo 2483 df-rab 2484 df-v 2765 df-sbc 2990 df-un 3161 df-in 3163 df-ss 3170 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-br 4034 df-iota 5219 df-riota 5877 df-sup 7050 | 
| This theorem is referenced by: suplub2ti 7067 supisoti 7076 inflbti 7090 suprubex 8978 zsupcl 10321 dvdslegcd 12131 | 
| Copyright terms: Public domain | W3C validator |