ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  supubti Unicode version

Theorem supubti 6879
Description: A supremum is an upper bound. See also supclti 6878 and suplubti 6880.

This proof demonstrates how to expand an iota-based definition (df-iota 5083) using riotacl2 5736.

(Contributed by Jim Kingdon, 24-Nov-2021.)

Hypotheses
Ref Expression
supmoti.ti  |-  ( (
ph  /\  ( u  e.  A  /\  v  e.  A ) )  -> 
( u  =  v  <-> 
( -.  u R v  /\  -.  v R u ) ) )
supclti.2  |-  ( ph  ->  E. x  e.  A  ( A. y  e.  B  -.  x R y  /\  A. y  e.  A  ( y R x  ->  E. z  e.  B  y R z ) ) )
Assertion
Ref Expression
supubti  |-  ( ph  ->  ( C  e.  B  ->  -.  sup ( B ,  A ,  R
) R C ) )
Distinct variable groups:    u, A, v, x    y, A, x, z    x, B, y, z    u, R, v, x    y, R, z    ph, u, v, x
Allowed substitution hints:    ph( y, z)    B( v, u)    C( x, y, z, v, u)

Proof of Theorem supubti
Dummy variable  w is distinct from all other variables.
StepHypRef Expression
1 simpl 108 . . . . 5  |-  ( ( A. y  e.  B  -.  x R y  /\  A. y  e.  A  ( y R x  ->  E. z  e.  B  y R z ) )  ->  A. y  e.  B  -.  x R y )
21a1i 9 . . . 4  |-  ( x  e.  A  ->  (
( A. y  e.  B  -.  x R y  /\  A. y  e.  A  ( y R x  ->  E. z  e.  B  y R
z ) )  ->  A. y  e.  B  -.  x R y ) )
32ss2rabi 3174 . . 3  |-  { x  e.  A  |  ( A. y  e.  B  -.  x R y  /\  A. y  e.  A  ( y R x  ->  E. z  e.  B  y R z ) ) }  C_  { x  e.  A  |  A. y  e.  B  -.  x R y }
4 supmoti.ti . . . . 5  |-  ( (
ph  /\  ( u  e.  A  /\  v  e.  A ) )  -> 
( u  =  v  <-> 
( -.  u R v  /\  -.  v R u ) ) )
5 supclti.2 . . . . 5  |-  ( ph  ->  E. x  e.  A  ( A. y  e.  B  -.  x R y  /\  A. y  e.  A  ( y R x  ->  E. z  e.  B  y R z ) ) )
64, 5supval2ti 6875 . . . 4  |-  ( ph  ->  sup ( B ,  A ,  R )  =  ( iota_ x  e.  A  ( A. y  e.  B  -.  x R y  /\  A. y  e.  A  (
y R x  ->  E. z  e.  B  y R z ) ) ) )
74, 5supeuti 6874 . . . . 5  |-  ( ph  ->  E! x  e.  A  ( A. y  e.  B  -.  x R y  /\  A. y  e.  A  ( y R x  ->  E. z  e.  B  y R z ) ) )
8 riotacl2 5736 . . . . 5  |-  ( E! x  e.  A  ( A. y  e.  B  -.  x R y  /\  A. y  e.  A  ( y R x  ->  E. z  e.  B  y R z ) )  ->  ( iota_ x  e.  A  ( A. y  e.  B  -.  x R y  /\  A. y  e.  A  (
y R x  ->  E. z  e.  B  y R z ) ) )  e.  { x  e.  A  |  ( A. y  e.  B  -.  x R y  /\  A. y  e.  A  ( y R x  ->  E. z  e.  B  y R z ) ) } )
97, 8syl 14 . . . 4  |-  ( ph  ->  ( iota_ x  e.  A  ( A. y  e.  B  -.  x R y  /\  A. y  e.  A  ( y R x  ->  E. z  e.  B  y R z ) ) )  e.  { x  e.  A  |  ( A. y  e.  B  -.  x R y  /\  A. y  e.  A  ( y R x  ->  E. z  e.  B  y R z ) ) } )
106, 9eqeltrd 2214 . . 3  |-  ( ph  ->  sup ( B ,  A ,  R )  e.  { x  e.  A  |  ( A. y  e.  B  -.  x R y  /\  A. y  e.  A  (
y R x  ->  E. z  e.  B  y R z ) ) } )
113, 10sseldi 3090 . 2  |-  ( ph  ->  sup ( B ,  A ,  R )  e.  { x  e.  A  |  A. y  e.  B  -.  x R y } )
12 breq2 3928 . . . . . . 7  |-  ( y  =  w  ->  (
x R y  <->  x R w ) )
1312notbid 656 . . . . . 6  |-  ( y  =  w  ->  ( -.  x R y  <->  -.  x R w ) )
1413cbvralv 2652 . . . . 5  |-  ( A. y  e.  B  -.  x R y  <->  A. w  e.  B  -.  x R w )
15 breq1 3927 . . . . . . 7  |-  ( x  =  sup ( B ,  A ,  R
)  ->  ( x R w  <->  sup ( B ,  A ,  R ) R w ) )
1615notbid 656 . . . . . 6  |-  ( x  =  sup ( B ,  A ,  R
)  ->  ( -.  x R w  <->  -.  sup ( B ,  A ,  R ) R w ) )
1716ralbidv 2435 . . . . 5  |-  ( x  =  sup ( B ,  A ,  R
)  ->  ( A. w  e.  B  -.  x R w  <->  A. w  e.  B  -.  sup ( B ,  A ,  R ) R w ) )
1814, 17syl5bb 191 . . . 4  |-  ( x  =  sup ( B ,  A ,  R
)  ->  ( A. y  e.  B  -.  x R y  <->  A. w  e.  B  -.  sup ( B ,  A ,  R ) R w ) )
1918elrab 2835 . . 3  |-  ( sup ( B ,  A ,  R )  e.  {
x  e.  A  |  A. y  e.  B  -.  x R y }  <-> 
( sup ( B ,  A ,  R
)  e.  A  /\  A. w  e.  B  -.  sup ( B ,  A ,  R ) R w ) )
2019simprbi 273 . 2  |-  ( sup ( B ,  A ,  R )  e.  {
x  e.  A  |  A. y  e.  B  -.  x R y }  ->  A. w  e.  B  -.  sup ( B ,  A ,  R ) R w )
21 breq2 3928 . . . 4  |-  ( w  =  C  ->  ( sup ( B ,  A ,  R ) R w  <->  sup ( B ,  A ,  R ) R C ) )
2221notbid 656 . . 3  |-  ( w  =  C  ->  ( -.  sup ( B ,  A ,  R ) R w  <->  -.  sup ( B ,  A ,  R ) R C ) )
2322rspccv 2781 . 2  |-  ( A. w  e.  B  -.  sup ( B ,  A ,  R ) R w  ->  ( C  e.  B  ->  -.  sup ( B ,  A ,  R ) R C ) )
2411, 20, 233syl 17 1  |-  ( ph  ->  ( C  e.  B  ->  -.  sup ( B ,  A ,  R
) R C ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 103    <-> wb 104    = wceq 1331    e. wcel 1480   A.wral 2414   E.wrex 2415   E!wreu 2416   {crab 2418   class class class wbr 3924   iota_crio 5722   supcsup 6862
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2119
This theorem depends on definitions:  df-bi 116  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2000  df-mo 2001  df-clab 2124  df-cleq 2130  df-clel 2133  df-nfc 2268  df-ral 2419  df-rex 2420  df-reu 2421  df-rmo 2422  df-rab 2423  df-v 2683  df-sbc 2905  df-un 3070  df-in 3072  df-ss 3079  df-sn 3528  df-pr 3529  df-op 3531  df-uni 3732  df-br 3925  df-iota 5083  df-riota 5723  df-sup 6864
This theorem is referenced by:  suplub2ti  6881  supisoti  6890  inflbti  6904  suprubex  8702  zsupcl  11629  dvdslegcd  11642
  Copyright terms: Public domain W3C validator