| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > supubti | Unicode version | ||
| Description: A supremum is an upper
bound. See also supclti 7073 and suplubti 7075.
This proof demonstrates how to expand an iota-based definition (df-iota 5220) using riotacl2 5894. (Contributed by Jim Kingdon, 24-Nov-2021.) |
| Ref | Expression |
|---|---|
| supmoti.ti |
|
| supclti.2 |
|
| Ref | Expression |
|---|---|
| supubti |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl 109 |
. . . . 5
| |
| 2 | 1 | a1i 9 |
. . . 4
|
| 3 | 2 | ss2rabi 3266 |
. . 3
|
| 4 | supmoti.ti |
. . . . 5
| |
| 5 | supclti.2 |
. . . . 5
| |
| 6 | 4, 5 | supval2ti 7070 |
. . . 4
|
| 7 | 4, 5 | supeuti 7069 |
. . . . 5
|
| 8 | riotacl2 5894 |
. . . . 5
| |
| 9 | 7, 8 | syl 14 |
. . . 4
|
| 10 | 6, 9 | eqeltrd 2273 |
. . 3
|
| 11 | 3, 10 | sselid 3182 |
. 2
|
| 12 | breq2 4038 |
. . . . . . 7
| |
| 13 | 12 | notbid 668 |
. . . . . 6
|
| 14 | 13 | cbvralv 2729 |
. . . . 5
|
| 15 | breq1 4037 |
. . . . . . 7
| |
| 16 | 15 | notbid 668 |
. . . . . 6
|
| 17 | 16 | ralbidv 2497 |
. . . . 5
|
| 18 | 14, 17 | bitrid 192 |
. . . 4
|
| 19 | 18 | elrab 2920 |
. . 3
|
| 20 | 19 | simprbi 275 |
. 2
|
| 21 | breq2 4038 |
. . . 4
| |
| 22 | 21 | notbid 668 |
. . 3
|
| 23 | 22 | rspccv 2865 |
. 2
|
| 24 | 11, 20, 23 | 3syl 17 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-reu 2482 df-rmo 2483 df-rab 2484 df-v 2765 df-sbc 2990 df-un 3161 df-in 3163 df-ss 3170 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-br 4035 df-iota 5220 df-riota 5880 df-sup 7059 |
| This theorem is referenced by: suplub2ti 7076 supisoti 7085 inflbti 7099 suprubex 8995 zsupcl 10338 dvdslegcd 12156 |
| Copyright terms: Public domain | W3C validator |