| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > supubti | Unicode version | ||
| Description: A supremum is an upper
bound. See also supclti 7126 and suplubti 7128.
This proof demonstrates how to expand an iota-based definition (df-iota 5251) using riotacl2 5936. (Contributed by Jim Kingdon, 24-Nov-2021.) |
| Ref | Expression |
|---|---|
| supmoti.ti |
|
| supclti.2 |
|
| Ref | Expression |
|---|---|
| supubti |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl 109 |
. . . . 5
| |
| 2 | 1 | a1i 9 |
. . . 4
|
| 3 | 2 | ss2rabi 3283 |
. . 3
|
| 4 | supmoti.ti |
. . . . 5
| |
| 5 | supclti.2 |
. . . . 5
| |
| 6 | 4, 5 | supval2ti 7123 |
. . . 4
|
| 7 | 4, 5 | supeuti 7122 |
. . . . 5
|
| 8 | riotacl2 5936 |
. . . . 5
| |
| 9 | 7, 8 | syl 14 |
. . . 4
|
| 10 | 6, 9 | eqeltrd 2284 |
. . 3
|
| 11 | 3, 10 | sselid 3199 |
. 2
|
| 12 | breq2 4063 |
. . . . . . 7
| |
| 13 | 12 | notbid 669 |
. . . . . 6
|
| 14 | 13 | cbvralv 2742 |
. . . . 5
|
| 15 | breq1 4062 |
. . . . . . 7
| |
| 16 | 15 | notbid 669 |
. . . . . 6
|
| 17 | 16 | ralbidv 2508 |
. . . . 5
|
| 18 | 14, 17 | bitrid 192 |
. . . 4
|
| 19 | 18 | elrab 2936 |
. . 3
|
| 20 | 19 | simprbi 275 |
. 2
|
| 21 | breq2 4063 |
. . . 4
| |
| 22 | 21 | notbid 669 |
. . 3
|
| 23 | 22 | rspccv 2881 |
. 2
|
| 24 | 11, 20, 23 | 3syl 17 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2189 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ral 2491 df-rex 2492 df-reu 2493 df-rmo 2494 df-rab 2495 df-v 2778 df-sbc 3006 df-un 3178 df-in 3180 df-ss 3187 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-br 4060 df-iota 5251 df-riota 5922 df-sup 7112 |
| This theorem is referenced by: suplub2ti 7129 supisoti 7138 inflbti 7152 suprubex 9059 zsupcl 10411 dvdslegcd 12400 |
| Copyright terms: Public domain | W3C validator |