Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > supubti | Unicode version |
Description: A supremum is an upper
bound. See also supclti 6963 and suplubti 6965.
This proof demonstrates how to expand an iota-based definition (df-iota 5153) using riotacl2 5811. (Contributed by Jim Kingdon, 24-Nov-2021.) |
Ref | Expression |
---|---|
supmoti.ti | |
supclti.2 |
Ref | Expression |
---|---|
supubti |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl 108 | . . . . 5 | |
2 | 1 | a1i 9 | . . . 4 |
3 | 2 | ss2rabi 3224 | . . 3 |
4 | supmoti.ti | . . . . 5 | |
5 | supclti.2 | . . . . 5 | |
6 | 4, 5 | supval2ti 6960 | . . . 4 |
7 | 4, 5 | supeuti 6959 | . . . . 5 |
8 | riotacl2 5811 | . . . . 5 | |
9 | 7, 8 | syl 14 | . . . 4 |
10 | 6, 9 | eqeltrd 2243 | . . 3 |
11 | 3, 10 | sselid 3140 | . 2 |
12 | breq2 3986 | . . . . . . 7 | |
13 | 12 | notbid 657 | . . . . . 6 |
14 | 13 | cbvralv 2692 | . . . . 5 |
15 | breq1 3985 | . . . . . . 7 | |
16 | 15 | notbid 657 | . . . . . 6 |
17 | 16 | ralbidv 2466 | . . . . 5 |
18 | 14, 17 | syl5bb 191 | . . . 4 |
19 | 18 | elrab 2882 | . . 3 |
20 | 19 | simprbi 273 | . 2 |
21 | breq2 3986 | . . . 4 | |
22 | 21 | notbid 657 | . . 3 |
23 | 22 | rspccv 2827 | . 2 |
24 | 11, 20, 23 | 3syl 17 | 1 |
Colors of variables: wff set class |
Syntax hints: wn 3 wi 4 wa 103 wb 104 wceq 1343 wcel 2136 wral 2444 wrex 2445 wreu 2446 crab 2448 class class class wbr 3982 crio 5797 csup 6947 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rex 2450 df-reu 2451 df-rmo 2452 df-rab 2453 df-v 2728 df-sbc 2952 df-un 3120 df-in 3122 df-ss 3129 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-br 3983 df-iota 5153 df-riota 5798 df-sup 6949 |
This theorem is referenced by: suplub2ti 6966 supisoti 6975 inflbti 6989 suprubex 8846 zsupcl 11880 dvdslegcd 11897 |
Copyright terms: Public domain | W3C validator |