| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > suplubti | Unicode version | ||
| Description: A supremum is the least upper bound. See also supclti 7064 and supubti 7065. (Contributed by Jim Kingdon, 24-Nov-2021.) | 
| Ref | Expression | 
|---|---|
| supmoti.ti | 
 | 
| supclti.2 | 
 | 
| Ref | Expression | 
|---|---|
| suplubti | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | simpr 110 | 
. . . . . 6
 | |
| 2 | breq1 4036 | 
. . . . . . . 8
 | |
| 3 | breq1 4036 | 
. . . . . . . . 9
 | |
| 4 | 3 | rexbidv 2498 | 
. . . . . . . 8
 | 
| 5 | 2, 4 | imbi12d 234 | 
. . . . . . 7
 | 
| 6 | 5 | cbvralv 2729 | 
. . . . . 6
 | 
| 7 | 1, 6 | sylib 122 | 
. . . . 5
 | 
| 8 | 7 | a1i 9 | 
. . . 4
 | 
| 9 | 8 | ss2rabi 3265 | 
. . 3
 | 
| 10 | supmoti.ti | 
. . . . 5
 | |
| 11 | supclti.2 | 
. . . . 5
 | |
| 12 | 10, 11 | supval2ti 7061 | 
. . . 4
 | 
| 13 | 10, 11 | supeuti 7060 | 
. . . . 5
 | 
| 14 | riotacl2 5891 | 
. . . . 5
 | |
| 15 | 13, 14 | syl 14 | 
. . . 4
 | 
| 16 | 12, 15 | eqeltrd 2273 | 
. . 3
 | 
| 17 | 9, 16 | sselid 3181 | 
. 2
 | 
| 18 | breq2 4037 | 
. . . . . 6
 | |
| 19 | 18 | imbi1d 231 | 
. . . . 5
 | 
| 20 | 19 | ralbidv 2497 | 
. . . 4
 | 
| 21 | 20 | elrab 2920 | 
. . 3
 | 
| 22 | 21 | simprbi 275 | 
. 2
 | 
| 23 | breq1 4036 | 
. . . . 5
 | |
| 24 | breq1 4036 | 
. . . . . 6
 | |
| 25 | 24 | rexbidv 2498 | 
. . . . 5
 | 
| 26 | 23, 25 | imbi12d 234 | 
. . . 4
 | 
| 27 | 26 | rspccv 2865 | 
. . 3
 | 
| 28 | 27 | impd 254 | 
. 2
 | 
| 29 | 17, 22, 28 | 3syl 17 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:    | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 | 
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-reu 2482 df-rmo 2483 df-rab 2484 df-v 2765 df-sbc 2990 df-un 3161 df-in 3163 df-ss 3170 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-br 4034 df-iota 5219 df-riota 5877 df-sup 7050 | 
| This theorem is referenced by: suplub2ti 7067 supisoti 7076 infglbti 7091 sup3exmid 8984 maxleast 11378 | 
| Copyright terms: Public domain | W3C validator |