Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  ss2rabdv Unicode version

Theorem ss2rabdv 3182
 Description: Deduction of restricted abstraction subclass from implication. (Contributed by NM, 30-May-2006.)
Hypothesis
Ref Expression
ss2rabdv.1
Assertion
Ref Expression
ss2rabdv
Distinct variable group:   ,
Allowed substitution hints:   ()   ()   ()

Proof of Theorem ss2rabdv
StepHypRef Expression
1 ss2rabdv.1 . . 3
21ralrimiva 2508 . 2
3 ss2rab 3177 . 2
42, 3sylibr 133 1
 Colors of variables: wff set class Syntax hints:   wi 4   wa 103   wcel 1481  wral 2417  crab 2421   wss 3075 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122 This theorem depends on definitions:  df-bi 116  df-nf 1438  df-sb 1737  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ral 2422  df-rab 2426  df-in 3081  df-ss 3088 This theorem is referenced by:  sess1  4266  suppssfv  5985  suppssov1  5986  clsss  12324  metss2lem  12703
 Copyright terms: Public domain W3C validator