ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ss2rabdv Unicode version

Theorem ss2rabdv 3282
Description: Deduction of restricted abstraction subclass from implication. (Contributed by NM, 30-May-2006.)
Hypothesis
Ref Expression
ss2rabdv.1  |-  ( (
ph  /\  x  e.  A )  ->  ( ps  ->  ch ) )
Assertion
Ref Expression
ss2rabdv  |-  ( ph  ->  { x  e.  A  |  ps }  C_  { x  e.  A  |  ch } )
Distinct variable group:    ph, x
Allowed substitution hints:    ps( x)    ch( x)    A( x)

Proof of Theorem ss2rabdv
StepHypRef Expression
1 ss2rabdv.1 . . 3  |-  ( (
ph  /\  x  e.  A )  ->  ( ps  ->  ch ) )
21ralrimiva 2581 . 2  |-  ( ph  ->  A. x  e.  A  ( ps  ->  ch )
)
3 ss2rab 3277 . 2  |-  ( { x  e.  A  |  ps }  C_  { x  e.  A  |  ch } 
<-> 
A. x  e.  A  ( ps  ->  ch )
)
42, 3sylibr 134 1  |-  ( ph  ->  { x  e.  A  |  ps }  C_  { x  e.  A  |  ch } )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    e. wcel 2178   A.wral 2486   {crab 2490    C_ wss 3174
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2189
This theorem depends on definitions:  df-bi 117  df-nf 1485  df-sb 1787  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ral 2491  df-rab 2495  df-in 3180  df-ss 3187
This theorem is referenced by:  sess1  4402  suppssfv  6177  suppssov1  6178  lspss  14276  clsss  14705  metss2lem  15084
  Copyright terms: Public domain W3C validator