ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ssab Unicode version

Theorem ssab 3267
Description: Subclass of a class abstraction. (Contributed by NM, 16-Aug-2006.)
Assertion
Ref Expression
ssab  |-  ( A 
C_  { x  | 
ph }  <->  A. x
( x  e.  A  ->  ph ) )
Distinct variable group:    x, A
Allowed substitution hint:    ph( x)

Proof of Theorem ssab
StepHypRef Expression
1 abid2 2327 . . 3  |-  { x  |  x  e.  A }  =  A
21sseq1i 3223 . 2  |-  ( { x  |  x  e.  A }  C_  { x  |  ph }  <->  A  C_  { x  |  ph } )
3 ss2ab 3265 . 2  |-  ( { x  |  x  e.  A }  C_  { x  |  ph }  <->  A. x
( x  e.  A  ->  ph ) )
42, 3bitr3i 186 1  |-  ( A 
C_  { x  | 
ph }  <->  A. x
( x  e.  A  ->  ph ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105   A.wal 1371    e. wcel 2177   {cab 2192    C_ wss 3170
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2188
This theorem depends on definitions:  df-bi 117  df-nf 1485  df-sb 1787  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-in 3176  df-ss 3183
This theorem is referenced by:  ssabral  3268  ssrab  3275
  Copyright terms: Public domain W3C validator