ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ssab Unicode version

Theorem ssab 3223
Description: Subclass of a class abstraction. (Contributed by NM, 16-Aug-2006.)
Assertion
Ref Expression
ssab  |-  ( A 
C_  { x  | 
ph }  <->  A. x
( x  e.  A  ->  ph ) )
Distinct variable group:    x, A
Allowed substitution hint:    ph( x)

Proof of Theorem ssab
StepHypRef Expression
1 abid2 2296 . . 3  |-  { x  |  x  e.  A }  =  A
21sseq1i 3179 . 2  |-  ( { x  |  x  e.  A }  C_  { x  |  ph }  <->  A  C_  { x  |  ph } )
3 ss2ab 3221 . 2  |-  ( { x  |  x  e.  A }  C_  { x  |  ph }  <->  A. x
( x  e.  A  ->  ph ) )
42, 3bitr3i 186 1  |-  ( A 
C_  { x  | 
ph }  <->  A. x
( x  e.  A  ->  ph ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105   A.wal 1351    e. wcel 2146   {cab 2161    C_ wss 3127
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1445  ax-7 1446  ax-gen 1447  ax-ie1 1491  ax-ie2 1492  ax-8 1502  ax-10 1503  ax-11 1504  ax-i12 1505  ax-bndl 1507  ax-4 1508  ax-17 1524  ax-i9 1528  ax-ial 1532  ax-i5r 1533  ax-ext 2157
This theorem depends on definitions:  df-bi 117  df-nf 1459  df-sb 1761  df-clab 2162  df-cleq 2168  df-clel 2171  df-nfc 2306  df-in 3133  df-ss 3140
This theorem is referenced by:  ssabral  3224  ssrab  3231
  Copyright terms: Public domain W3C validator