ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ssab Unicode version

Theorem ssab 3212
Description: Subclass of a class abstraction. (Contributed by NM, 16-Aug-2006.)
Assertion
Ref Expression
ssab  |-  ( A 
C_  { x  | 
ph }  <->  A. x
( x  e.  A  ->  ph ) )
Distinct variable group:    x, A
Allowed substitution hint:    ph( x)

Proof of Theorem ssab
StepHypRef Expression
1 abid2 2287 . . 3  |-  { x  |  x  e.  A }  =  A
21sseq1i 3168 . 2  |-  ( { x  |  x  e.  A }  C_  { x  |  ph }  <->  A  C_  { x  |  ph } )
3 ss2ab 3210 . 2  |-  ( { x  |  x  e.  A }  C_  { x  |  ph }  <->  A. x
( x  e.  A  ->  ph ) )
42, 3bitr3i 185 1  |-  ( A 
C_  { x  | 
ph }  <->  A. x
( x  e.  A  ->  ph ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 104   A.wal 1341    e. wcel 2136   {cab 2151    C_ wss 3116
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-in 3122  df-ss 3129
This theorem is referenced by:  ssabral  3213  ssrab  3220
  Copyright terms: Public domain W3C validator