ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ssab GIF version

Theorem ssab 3212
Description: Subclass of a class abstraction. (Contributed by NM, 16-Aug-2006.)
Assertion
Ref Expression
ssab (𝐴 ⊆ {𝑥𝜑} ↔ ∀𝑥(𝑥𝐴𝜑))
Distinct variable group:   𝑥,𝐴
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem ssab
StepHypRef Expression
1 abid2 2287 . . 3 {𝑥𝑥𝐴} = 𝐴
21sseq1i 3168 . 2 ({𝑥𝑥𝐴} ⊆ {𝑥𝜑} ↔ 𝐴 ⊆ {𝑥𝜑})
3 ss2ab 3210 . 2 ({𝑥𝑥𝐴} ⊆ {𝑥𝜑} ↔ ∀𝑥(𝑥𝐴𝜑))
42, 3bitr3i 185 1 (𝐴 ⊆ {𝑥𝜑} ↔ ∀𝑥(𝑥𝐴𝜑))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 104  wal 1341  wcel 2136  {cab 2151  wss 3116
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-in 3122  df-ss 3129
This theorem is referenced by:  ssabral  3213  ssrab  3220
  Copyright terms: Public domain W3C validator