ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ssab GIF version

Theorem ssab 3274
Description: Subclass of a class abstraction. (Contributed by NM, 16-Aug-2006.)
Assertion
Ref Expression
ssab (𝐴 ⊆ {𝑥𝜑} ↔ ∀𝑥(𝑥𝐴𝜑))
Distinct variable group:   𝑥,𝐴
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem ssab
StepHypRef Expression
1 abid2 2330 . . 3 {𝑥𝑥𝐴} = 𝐴
21sseq1i 3230 . 2 ({𝑥𝑥𝐴} ⊆ {𝑥𝜑} ↔ 𝐴 ⊆ {𝑥𝜑})
3 ss2ab 3272 . 2 ({𝑥𝑥𝐴} ⊆ {𝑥𝜑} ↔ ∀𝑥(𝑥𝐴𝜑))
42, 3bitr3i 186 1 (𝐴 ⊆ {𝑥𝜑} ↔ ∀𝑥(𝑥𝐴𝜑))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 105  wal 1373  wcel 2180  {cab 2195  wss 3177
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 713  ax-5 1473  ax-7 1474  ax-gen 1475  ax-ie1 1519  ax-ie2 1520  ax-8 1530  ax-10 1531  ax-11 1532  ax-i12 1533  ax-bndl 1535  ax-4 1536  ax-17 1552  ax-i9 1556  ax-ial 1560  ax-i5r 1561  ax-ext 2191
This theorem depends on definitions:  df-bi 117  df-nf 1487  df-sb 1789  df-clab 2196  df-cleq 2202  df-clel 2205  df-nfc 2341  df-in 3183  df-ss 3190
This theorem is referenced by:  ssabral  3275  ssrab  3282
  Copyright terms: Public domain W3C validator