ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ssrab Unicode version

Theorem ssrab 3279
Description: Subclass of a restricted class abstraction. (Contributed by NM, 16-Aug-2006.)
Assertion
Ref Expression
ssrab  |-  ( B 
C_  { x  e.  A  |  ph }  <->  ( B  C_  A  /\  A. x  e.  B  ph ) )
Distinct variable groups:    x, A    x, B
Allowed substitution hint:    ph( x)

Proof of Theorem ssrab
StepHypRef Expression
1 df-rab 2495 . . 3  |-  { x  e.  A  |  ph }  =  { x  |  ( x  e.  A  /\  ph ) }
21sseq2i 3228 . 2  |-  ( B 
C_  { x  e.  A  |  ph }  <->  B 
C_  { x  |  ( x  e.  A  /\  ph ) } )
3 ssab 3271 . 2  |-  ( B 
C_  { x  |  ( x  e.  A  /\  ph ) }  <->  A. x
( x  e.  B  ->  ( x  e.  A  /\  ph ) ) )
4 dfss3 3190 . . . 4  |-  ( B 
C_  A  <->  A. x  e.  B  x  e.  A )
54anbi1i 458 . . 3  |-  ( ( B  C_  A  /\  A. x  e.  B  ph ) 
<->  ( A. x  e.  B  x  e.  A  /\  A. x  e.  B  ph ) )
6 r19.26 2634 . . 3  |-  ( A. x  e.  B  (
x  e.  A  /\  ph )  <->  ( A. x  e.  B  x  e.  A  /\  A. x  e.  B  ph ) )
7 df-ral 2491 . . 3  |-  ( A. x  e.  B  (
x  e.  A  /\  ph )  <->  A. x ( x  e.  B  ->  (
x  e.  A  /\  ph ) ) )
85, 6, 73bitr2ri 209 . 2  |-  ( A. x ( x  e.  B  ->  ( x  e.  A  /\  ph )
)  <->  ( B  C_  A  /\  A. x  e.  B  ph ) )
92, 3, 83bitri 206 1  |-  ( B 
C_  { x  e.  A  |  ph }  <->  ( B  C_  A  /\  A. x  e.  B  ph ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105   A.wal 1371    e. wcel 2178   {cab 2193   A.wral 2486   {crab 2490    C_ wss 3174
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2189
This theorem depends on definitions:  df-bi 117  df-nf 1485  df-sb 1787  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ral 2491  df-rab 2495  df-in 3180  df-ss 3187
This theorem is referenced by:  ssrabdv  3280  frind  4417  epttop  14677
  Copyright terms: Public domain W3C validator