Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  ssrab Unicode version

Theorem ssrab 3143
 Description: Subclass of a restricted class abstraction. (Contributed by NM, 16-Aug-2006.)
Assertion
Ref Expression
ssrab
Distinct variable groups:   ,   ,
Allowed substitution hint:   ()

Proof of Theorem ssrab
StepHypRef Expression
1 df-rab 2400 . . 3
21sseq2i 3092 . 2
3 ssab 3135 . 2
4 dfss3 3055 . . . 4
54anbi1i 451 . . 3
6 r19.26 2533 . . 3
7 df-ral 2396 . . 3
85, 6, 73bitr2ri 208 . 2
92, 3, 83bitri 205 1
 Colors of variables: wff set class Syntax hints:   wi 4   wa 103   wb 104  wal 1312   wcel 1463  cab 2101  wral 2391  crab 2395   wss 3039 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 681  ax-5 1406  ax-7 1407  ax-gen 1408  ax-ie1 1452  ax-ie2 1453  ax-8 1465  ax-10 1466  ax-11 1467  ax-i12 1468  ax-bndl 1469  ax-4 1470  ax-17 1489  ax-i9 1493  ax-ial 1497  ax-i5r 1498  ax-ext 2097 This theorem depends on definitions:  df-bi 116  df-nf 1420  df-sb 1719  df-clab 2102  df-cleq 2108  df-clel 2111  df-nfc 2245  df-ral 2396  df-rab 2400  df-in 3045  df-ss 3052 This theorem is referenced by:  ssrabdv  3144  frind  4242  epttop  12165
 Copyright terms: Public domain W3C validator