Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > ssrab | Unicode version |
Description: Subclass of a restricted class abstraction. (Contributed by NM, 16-Aug-2006.) |
Ref | Expression |
---|---|
ssrab |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-rab 2457 | . . 3 | |
2 | 1 | sseq2i 3174 | . 2 |
3 | ssab 3217 | . 2 | |
4 | dfss3 3137 | . . . 4 | |
5 | 4 | anbi1i 455 | . . 3 |
6 | r19.26 2596 | . . 3 | |
7 | df-ral 2453 | . . 3 | |
8 | 5, 6, 7 | 3bitr2ri 208 | . 2 |
9 | 2, 3, 8 | 3bitri 205 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 wal 1346 wcel 2141 cab 2156 wral 2448 crab 2452 wss 3121 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-rab 2457 df-in 3127 df-ss 3134 |
This theorem is referenced by: ssrabdv 3226 frind 4337 epttop 12884 |
Copyright terms: Public domain | W3C validator |