ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ss2ab Unicode version

Theorem ss2ab 3260
Description: Class abstractions in a subclass relationship. (Contributed by NM, 3-Jul-1994.)
Assertion
Ref Expression
ss2ab  |-  ( { x  |  ph }  C_ 
{ x  |  ps } 
<-> 
A. x ( ph  ->  ps ) )

Proof of Theorem ss2ab
StepHypRef Expression
1 nfab1 2349 . . 3  |-  F/_ x { x  |  ph }
2 nfab1 2349 . . 3  |-  F/_ x { x  |  ps }
31, 2dfss2f 3183 . 2  |-  ( { x  |  ph }  C_ 
{ x  |  ps } 
<-> 
A. x ( x  e.  { x  | 
ph }  ->  x  e.  { x  |  ps } ) )
4 abid 2192 . . . 4  |-  ( x  e.  { x  | 
ph }  <->  ph )
5 abid 2192 . . . 4  |-  ( x  e.  { x  |  ps }  <->  ps )
64, 5imbi12i 239 . . 3  |-  ( ( x  e.  { x  |  ph }  ->  x  e.  { x  |  ps } )  <->  ( ph  ->  ps ) )
76albii 1492 . 2  |-  ( A. x ( x  e. 
{ x  |  ph }  ->  x  e.  {
x  |  ps }
)  <->  A. x ( ph  ->  ps ) )
83, 7bitri 184 1  |-  ( { x  |  ph }  C_ 
{ x  |  ps } 
<-> 
A. x ( ph  ->  ps ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105   A.wal 1370    e. wcel 2175   {cab 2190    C_ wss 3165
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-ext 2186
This theorem depends on definitions:  df-bi 117  df-nf 1483  df-sb 1785  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-in 3171  df-ss 3178
This theorem is referenced by:  abss  3261  ssab  3262  ss2abi  3264  ss2abdv  3265  ss2rab  3268  rabss2  3275  iotanul  5244  iotass  5246
  Copyright terms: Public domain W3C validator