ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ss2ab Unicode version

Theorem ss2ab 3210
Description: Class abstractions in a subclass relationship. (Contributed by NM, 3-Jul-1994.)
Assertion
Ref Expression
ss2ab  |-  ( { x  |  ph }  C_ 
{ x  |  ps } 
<-> 
A. x ( ph  ->  ps ) )

Proof of Theorem ss2ab
StepHypRef Expression
1 nfab1 2310 . . 3  |-  F/_ x { x  |  ph }
2 nfab1 2310 . . 3  |-  F/_ x { x  |  ps }
31, 2dfss2f 3133 . 2  |-  ( { x  |  ph }  C_ 
{ x  |  ps } 
<-> 
A. x ( x  e.  { x  | 
ph }  ->  x  e.  { x  |  ps } ) )
4 abid 2153 . . . 4  |-  ( x  e.  { x  | 
ph }  <->  ph )
5 abid 2153 . . . 4  |-  ( x  e.  { x  |  ps }  <->  ps )
64, 5imbi12i 238 . . 3  |-  ( ( x  e.  { x  |  ph }  ->  x  e.  { x  |  ps } )  <->  ( ph  ->  ps ) )
76albii 1458 . 2  |-  ( A. x ( x  e. 
{ x  |  ph }  ->  x  e.  {
x  |  ps }
)  <->  A. x ( ph  ->  ps ) )
83, 7bitri 183 1  |-  ( { x  |  ph }  C_ 
{ x  |  ps } 
<-> 
A. x ( ph  ->  ps ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 104   A.wal 1341    e. wcel 2136   {cab 2151    C_ wss 3116
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-in 3122  df-ss 3129
This theorem is referenced by:  abss  3211  ssab  3212  ss2abi  3214  ss2abdv  3215  ss2rab  3218  rabss2  3225  iotanul  5168  iotass  5170
  Copyright terms: Public domain W3C validator