| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ss2ab | Unicode version | ||
| Description: Class abstractions in a subclass relationship. (Contributed by NM, 3-Jul-1994.) |
| Ref | Expression |
|---|---|
| ss2ab |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfab1 2351 |
. . 3
| |
| 2 | nfab1 2351 |
. . 3
| |
| 3 | 1, 2 | dfss2f 3188 |
. 2
|
| 4 | abid 2194 |
. . . 4
| |
| 5 | abid 2194 |
. . . 4
| |
| 6 | 4, 5 | imbi12i 239 |
. . 3
|
| 7 | 6 | albii 1494 |
. 2
|
| 8 | 3, 7 | bitri 184 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2188 |
| This theorem depends on definitions: df-bi 117 df-nf 1485 df-sb 1787 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-in 3176 df-ss 3183 |
| This theorem is referenced by: abss 3266 ssab 3267 ss2abi 3269 ss2abdv 3270 ss2rab 3273 rabss2 3280 iotanul 5256 iotass 5258 |
| Copyright terms: Public domain | W3C validator |