ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ss2ab Unicode version

Theorem ss2ab 3265
Description: Class abstractions in a subclass relationship. (Contributed by NM, 3-Jul-1994.)
Assertion
Ref Expression
ss2ab  |-  ( { x  |  ph }  C_ 
{ x  |  ps } 
<-> 
A. x ( ph  ->  ps ) )

Proof of Theorem ss2ab
StepHypRef Expression
1 nfab1 2351 . . 3  |-  F/_ x { x  |  ph }
2 nfab1 2351 . . 3  |-  F/_ x { x  |  ps }
31, 2dfss2f 3188 . 2  |-  ( { x  |  ph }  C_ 
{ x  |  ps } 
<-> 
A. x ( x  e.  { x  | 
ph }  ->  x  e.  { x  |  ps } ) )
4 abid 2194 . . . 4  |-  ( x  e.  { x  | 
ph }  <->  ph )
5 abid 2194 . . . 4  |-  ( x  e.  { x  |  ps }  <->  ps )
64, 5imbi12i 239 . . 3  |-  ( ( x  e.  { x  |  ph }  ->  x  e.  { x  |  ps } )  <->  ( ph  ->  ps ) )
76albii 1494 . 2  |-  ( A. x ( x  e. 
{ x  |  ph }  ->  x  e.  {
x  |  ps }
)  <->  A. x ( ph  ->  ps ) )
83, 7bitri 184 1  |-  ( { x  |  ph }  C_ 
{ x  |  ps } 
<-> 
A. x ( ph  ->  ps ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105   A.wal 1371    e. wcel 2177   {cab 2192    C_ wss 3170
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2188
This theorem depends on definitions:  df-bi 117  df-nf 1485  df-sb 1787  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-in 3176  df-ss 3183
This theorem is referenced by:  abss  3266  ssab  3267  ss2abi  3269  ss2abdv  3270  ss2rab  3273  rabss2  3280  iotanul  5256  iotass  5258
  Copyright terms: Public domain W3C validator