ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  abss Unicode version

Theorem abss 3216
Description: Class abstraction in a subclass relationship. (Contributed by NM, 16-Aug-2006.)
Assertion
Ref Expression
abss  |-  ( { x  |  ph }  C_  A  <->  A. x ( ph  ->  x  e.  A ) )
Distinct variable group:    x, A
Allowed substitution hint:    ph( x)

Proof of Theorem abss
StepHypRef Expression
1 abid2 2291 . . 3  |-  { x  |  x  e.  A }  =  A
21sseq2i 3174 . 2  |-  ( { x  |  ph }  C_ 
{ x  |  x  e.  A }  <->  { x  |  ph }  C_  A
)
3 ss2ab 3215 . 2  |-  ( { x  |  ph }  C_ 
{ x  |  x  e.  A }  <->  A. x
( ph  ->  x  e.  A ) )
42, 3bitr3i 185 1  |-  ( { x  |  ph }  C_  A  <->  A. x ( ph  ->  x  e.  A ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 104   A.wal 1346    e. wcel 2141   {cab 2156    C_ wss 3121
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-ext 2152
This theorem depends on definitions:  df-bi 116  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-in 3127  df-ss 3134
This theorem is referenced by:  abssdv  3221  rabss  3224  uniiunlem  3236  iunss  3914  reliun  4732  funimaexglem  5281
  Copyright terms: Public domain W3C validator