ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  abss Unicode version

Theorem abss 3252
Description: Class abstraction in a subclass relationship. (Contributed by NM, 16-Aug-2006.)
Assertion
Ref Expression
abss  |-  ( { x  |  ph }  C_  A  <->  A. x ( ph  ->  x  e.  A ) )
Distinct variable group:    x, A
Allowed substitution hint:    ph( x)

Proof of Theorem abss
StepHypRef Expression
1 abid2 2317 . . 3  |-  { x  |  x  e.  A }  =  A
21sseq2i 3210 . 2  |-  ( { x  |  ph }  C_ 
{ x  |  x  e.  A }  <->  { x  |  ph }  C_  A
)
3 ss2ab 3251 . 2  |-  ( { x  |  ph }  C_ 
{ x  |  x  e.  A }  <->  A. x
( ph  ->  x  e.  A ) )
42, 3bitr3i 186 1  |-  ( { x  |  ph }  C_  A  <->  A. x ( ph  ->  x  e.  A ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105   A.wal 1362    e. wcel 2167   {cab 2182    C_ wss 3157
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-in 3163  df-ss 3170
This theorem is referenced by:  abssdv  3257  rabss  3260  uniiunlem  3272  iunss  3957  reliun  4784  funimaexglem  5341
  Copyright terms: Public domain W3C validator