![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > sseq1i | Unicode version |
Description: An equality inference for the subclass relationship. (Contributed by NM, 18-Aug-1993.) |
Ref | Expression |
---|---|
sseq1i.1 |
![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
sseq1i |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sseq1i.1 |
. 2
![]() ![]() ![]() ![]() | |
2 | sseq1 3203 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | 1, 2 | ax-mp 5 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-11 1517 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-in 3160 df-ss 3167 |
This theorem is referenced by: eqsstri 3212 eqsstrid 3226 ssab 3250 rabss 3257 uniiunlem 3269 prss 3775 prssg 3776 tpss 3785 iunss 3954 pwtr 4249 ordsucss 4537 elomssom 4638 cores2 5179 dffun2 5265 funimaexglem 5338 idref 5800 ordgt0ge1 6490 3nsssucpw1 7298 prarloclemn 7561 bdeqsuc 15443 bj-omssind 15497 |
Copyright terms: Public domain | W3C validator |