| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > sseq1i | Unicode version | ||
| Description: An equality inference for the subclass relationship. (Contributed by NM, 18-Aug-1993.) |
| Ref | Expression |
|---|---|
| sseq1i.1 |
|
| Ref | Expression |
|---|---|
| sseq1i |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sseq1i.1 |
. 2
| |
| 2 | sseq1 3220 |
. 2
| |
| 3 | 1, 2 | ax-mp 5 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-11 1530 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2188 |
| This theorem depends on definitions: df-bi 117 df-nf 1485 df-sb 1787 df-clab 2193 df-cleq 2199 df-clel 2202 df-in 3176 df-ss 3183 |
| This theorem is referenced by: eqsstri 3229 eqsstrid 3243 ssab 3267 rabss 3274 uniiunlem 3286 prss 3795 prssg 3796 tpss 3807 iunss 3977 pwtr 4276 ordsucss 4565 elomssom 4666 cores2 5209 dffun2 5295 funimaexglem 5371 idref 5843 ordgt0ge1 6539 3nsssucpw1 7377 prarloclemn 7642 bdeqsuc 15986 bj-omssind 16040 |
| Copyright terms: Public domain | W3C validator |