ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sseq1i Unicode version

Theorem sseq1i 3205
Description: An equality inference for the subclass relationship. (Contributed by NM, 18-Aug-1993.)
Hypothesis
Ref Expression
sseq1i.1  |-  A  =  B
Assertion
Ref Expression
sseq1i  |-  ( A 
C_  C  <->  B  C_  C
)

Proof of Theorem sseq1i
StepHypRef Expression
1 sseq1i.1 . 2  |-  A  =  B
2 sseq1 3202 . 2  |-  ( A  =  B  ->  ( A  C_  C  <->  B  C_  C
) )
31, 2ax-mp 5 1  |-  ( A 
C_  C  <->  B  C_  C
)
Colors of variables: wff set class
Syntax hints:    <-> wb 105    = wceq 1364    C_ wss 3153
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-11 1517  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175
This theorem depends on definitions:  df-bi 117  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-in 3159  df-ss 3166
This theorem is referenced by:  eqsstri  3211  eqsstrid  3225  ssab  3249  rabss  3256  uniiunlem  3268  prss  3774  prssg  3775  tpss  3784  iunss  3953  pwtr  4248  ordsucss  4536  elomssom  4637  cores2  5178  dffun2  5264  funimaexglem  5337  idref  5799  ordgt0ge1  6488  3nsssucpw1  7296  prarloclemn  7559  bdeqsuc  15373  bj-omssind  15427
  Copyright terms: Public domain W3C validator