Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > sseq1i | Unicode version |
Description: An equality inference for the subclass relationship. (Contributed by NM, 18-Aug-1993.) |
Ref | Expression |
---|---|
sseq1i.1 |
Ref | Expression |
---|---|
sseq1i |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sseq1i.1 | . 2 | |
2 | sseq1 3165 | . 2 | |
3 | 1, 2 | ax-mp 5 | 1 |
Colors of variables: wff set class |
Syntax hints: wb 104 wceq 1343 wss 3116 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-11 1494 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-in 3122 df-ss 3129 |
This theorem is referenced by: eqsstri 3174 eqsstrid 3188 ssab 3212 rabss 3219 uniiunlem 3231 prss 3729 prssg 3730 tpss 3738 iunss 3907 pwtr 4197 ordsucss 4481 elomssom 4582 cores2 5116 dffun2 5198 funimaexglem 5271 idref 5725 ordgt0ge1 6403 3nsssucpw1 7192 prarloclemn 7440 bdeqsuc 13763 bj-omssind 13817 |
Copyright terms: Public domain | W3C validator |