| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > sseq1i | Unicode version | ||
| Description: An equality inference for the subclass relationship. (Contributed by NM, 18-Aug-1993.) |
| Ref | Expression |
|---|---|
| sseq1i.1 |
|
| Ref | Expression |
|---|---|
| sseq1i |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sseq1i.1 |
. 2
| |
| 2 | sseq1 3215 |
. 2
| |
| 3 | 1, 2 | ax-mp 5 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-11 1528 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-ext 2186 |
| This theorem depends on definitions: df-bi 117 df-nf 1483 df-sb 1785 df-clab 2191 df-cleq 2197 df-clel 2200 df-in 3171 df-ss 3178 |
| This theorem is referenced by: eqsstri 3224 eqsstrid 3238 ssab 3262 rabss 3269 uniiunlem 3281 prss 3788 prssg 3789 tpss 3798 iunss 3967 pwtr 4262 ordsucss 4551 elomssom 4652 cores2 5194 dffun2 5280 funimaexglem 5356 idref 5824 ordgt0ge1 6520 3nsssucpw1 7347 prarloclemn 7611 bdeqsuc 15779 bj-omssind 15833 |
| Copyright terms: Public domain | W3C validator |