ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sseq1i Unicode version

Theorem sseq1i 3168
Description: An equality inference for the subclass relationship. (Contributed by NM, 18-Aug-1993.)
Hypothesis
Ref Expression
sseq1i.1  |-  A  =  B
Assertion
Ref Expression
sseq1i  |-  ( A 
C_  C  <->  B  C_  C
)

Proof of Theorem sseq1i
StepHypRef Expression
1 sseq1i.1 . 2  |-  A  =  B
2 sseq1 3165 . 2  |-  ( A  =  B  ->  ( A  C_  C  <->  B  C_  C
) )
31, 2ax-mp 5 1  |-  ( A 
C_  C  <->  B  C_  C
)
Colors of variables: wff set class
Syntax hints:    <-> wb 104    = wceq 1343    C_ wss 3116
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-11 1494  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-in 3122  df-ss 3129
This theorem is referenced by:  eqsstri  3174  eqsstrid  3188  ssab  3212  rabss  3219  uniiunlem  3231  prss  3729  prssg  3730  tpss  3738  iunss  3907  pwtr  4197  ordsucss  4481  elomssom  4582  cores2  5116  dffun2  5198  funimaexglem  5271  idref  5725  ordgt0ge1  6403  3nsssucpw1  7192  prarloclemn  7440  bdeqsuc  13763  bj-omssind  13817
  Copyright terms: Public domain W3C validator