ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sseq12i GIF version

Theorem sseq12i 3175
Description: An equality inference for the subclass relationship. (Contributed by NM, 31-May-1999.) (Proof shortened by Eric Schmidt, 26-Jan-2007.)
Hypotheses
Ref Expression
sseq1i.1 𝐴 = 𝐵
sseq12i.2 𝐶 = 𝐷
Assertion
Ref Expression
sseq12i (𝐴𝐶𝐵𝐷)

Proof of Theorem sseq12i
StepHypRef Expression
1 sseq1i.1 . 2 𝐴 = 𝐵
2 sseq12i.2 . 2 𝐶 = 𝐷
3 sseq12 3172 . 2 ((𝐴 = 𝐵𝐶 = 𝐷) → (𝐴𝐶𝐵𝐷))
41, 2, 3mp2an 424 1 (𝐴𝐶𝐵𝐷)
Colors of variables: wff set class
Syntax hints:  wb 104   = wceq 1348  wss 3121
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-11 1499  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-ext 2152
This theorem depends on definitions:  df-bi 116  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-in 3127  df-ss 3134
This theorem is referenced by:  3sstr3i  3187  3sstr4i  3188  3sstr3g  3189  3sstr4g  3190  ss2rab  3223
  Copyright terms: Public domain W3C validator