ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sseq12i GIF version

Theorem sseq12i 3207
Description: An equality inference for the subclass relationship. (Contributed by NM, 31-May-1999.) (Proof shortened by Eric Schmidt, 26-Jan-2007.)
Hypotheses
Ref Expression
sseq1i.1 𝐴 = 𝐵
sseq12i.2 𝐶 = 𝐷
Assertion
Ref Expression
sseq12i (𝐴𝐶𝐵𝐷)

Proof of Theorem sseq12i
StepHypRef Expression
1 sseq1i.1 . 2 𝐴 = 𝐵
2 sseq12i.2 . 2 𝐶 = 𝐷
3 sseq12 3204 . 2 ((𝐴 = 𝐵𝐶 = 𝐷) → (𝐴𝐶𝐵𝐷))
41, 2, 3mp2an 426 1 (𝐴𝐶𝐵𝐷)
Colors of variables: wff set class
Syntax hints:  wb 105   = wceq 1364  wss 3153
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-11 1517  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175
This theorem depends on definitions:  df-bi 117  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-in 3159  df-ss 3166
This theorem is referenced by:  3sstr3i  3219  3sstr4i  3220  3sstr3g  3221  3sstr4g  3222  ss2rab  3255
  Copyright terms: Public domain W3C validator