ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sseq12 Unicode version

Theorem sseq12 3217
Description: Equality theorem for the subclass relationship. (Contributed by NM, 31-May-1999.)
Assertion
Ref Expression
sseq12  |-  ( ( A  =  B  /\  C  =  D )  ->  ( A  C_  C  <->  B 
C_  D ) )

Proof of Theorem sseq12
StepHypRef Expression
1 sseq1 3215 . 2  |-  ( A  =  B  ->  ( A  C_  C  <->  B  C_  C
) )
2 sseq2 3216 . 2  |-  ( C  =  D  ->  ( B  C_  C  <->  B  C_  D
) )
31, 2sylan9bb 462 1  |-  ( ( A  =  B  /\  C  =  D )  ->  ( A  C_  C  <->  B 
C_  D ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1372    C_ wss 3165
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-11 1528  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-ext 2186
This theorem depends on definitions:  df-bi 117  df-nf 1483  df-sb 1785  df-clab 2191  df-cleq 2197  df-clel 2200  df-in 3171  df-ss 3178
This theorem is referenced by:  sseq12i  3220  undifexmid  4236  exmidundif  4249  exmidundifim  4250  funcnvuni  5342  fun11iun  5542
  Copyright terms: Public domain W3C validator