ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sseq12 Unicode version

Theorem sseq12 3204
Description: Equality theorem for the subclass relationship. (Contributed by NM, 31-May-1999.)
Assertion
Ref Expression
sseq12  |-  ( ( A  =  B  /\  C  =  D )  ->  ( A  C_  C  <->  B 
C_  D ) )

Proof of Theorem sseq12
StepHypRef Expression
1 sseq1 3202 . 2  |-  ( A  =  B  ->  ( A  C_  C  <->  B  C_  C
) )
2 sseq2 3203 . 2  |-  ( C  =  D  ->  ( B  C_  C  <->  B  C_  D
) )
31, 2sylan9bb 462 1  |-  ( ( A  =  B  /\  C  =  D )  ->  ( A  C_  C  <->  B 
C_  D ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1364    C_ wss 3153
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-11 1517  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175
This theorem depends on definitions:  df-bi 117  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-in 3159  df-ss 3166
This theorem is referenced by:  sseq12i  3207  undifexmid  4222  exmidundif  4235  exmidundifim  4236  funcnvuni  5323  fun11iun  5521
  Copyright terms: Public domain W3C validator