ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sseq12 Unicode version

Theorem sseq12 3178
Description: Equality theorem for the subclass relationship. (Contributed by NM, 31-May-1999.)
Assertion
Ref Expression
sseq12  |-  ( ( A  =  B  /\  C  =  D )  ->  ( A  C_  C  <->  B 
C_  D ) )

Proof of Theorem sseq12
StepHypRef Expression
1 sseq1 3176 . 2  |-  ( A  =  B  ->  ( A  C_  C  <->  B  C_  C
) )
2 sseq2 3177 . 2  |-  ( C  =  D  ->  ( B  C_  C  <->  B  C_  D
) )
31, 2sylan9bb 462 1  |-  ( ( A  =  B  /\  C  =  D )  ->  ( A  C_  C  <->  B 
C_  D ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1353    C_ wss 3127
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1445  ax-7 1446  ax-gen 1447  ax-ie1 1491  ax-ie2 1492  ax-8 1502  ax-11 1504  ax-4 1508  ax-17 1524  ax-i9 1528  ax-ial 1532  ax-i5r 1533  ax-ext 2157
This theorem depends on definitions:  df-bi 117  df-nf 1459  df-sb 1761  df-clab 2162  df-cleq 2168  df-clel 2171  df-in 3133  df-ss 3140
This theorem is referenced by:  sseq12i  3181  undifexmid  4188  exmidundif  4201  exmidundifim  4202  funcnvuni  5277  fun11iun  5474
  Copyright terms: Public domain W3C validator