| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > sseq12 | Unicode version | ||
| Description: Equality theorem for the subclass relationship. (Contributed by NM, 31-May-1999.) |
| Ref | Expression |
|---|---|
| sseq12 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sseq1 3215 |
. 2
| |
| 2 | sseq2 3216 |
. 2
| |
| 3 | 1, 2 | sylan9bb 462 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-11 1528 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-ext 2186 |
| This theorem depends on definitions: df-bi 117 df-nf 1483 df-sb 1785 df-clab 2191 df-cleq 2197 df-clel 2200 df-in 3171 df-ss 3178 |
| This theorem is referenced by: sseq12i 3220 undifexmid 4236 exmidundif 4249 exmidundifim 4250 funcnvuni 5342 fun11iun 5542 |
| Copyright terms: Public domain | W3C validator |