ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sseq12 Unicode version

Theorem sseq12 3218
Description: Equality theorem for the subclass relationship. (Contributed by NM, 31-May-1999.)
Assertion
Ref Expression
sseq12  |-  ( ( A  =  B  /\  C  =  D )  ->  ( A  C_  C  <->  B 
C_  D ) )

Proof of Theorem sseq12
StepHypRef Expression
1 sseq1 3216 . 2  |-  ( A  =  B  ->  ( A  C_  C  <->  B  C_  C
) )
2 sseq2 3217 . 2  |-  ( C  =  D  ->  ( B  C_  C  <->  B  C_  D
) )
31, 2sylan9bb 462 1  |-  ( ( A  =  B  /\  C  =  D )  ->  ( A  C_  C  <->  B 
C_  D ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1373    C_ wss 3166
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-11 1529  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-ext 2187
This theorem depends on definitions:  df-bi 117  df-nf 1484  df-sb 1786  df-clab 2192  df-cleq 2198  df-clel 2201  df-in 3172  df-ss 3179
This theorem is referenced by:  sseq12i  3221  undifexmid  4237  exmidundif  4250  exmidundifim  4251  funcnvuni  5343  fun11iun  5543
  Copyright terms: Public domain W3C validator