Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > sseq2i | Unicode version |
Description: An equality inference for the subclass relationship. (Contributed by NM, 30-Aug-1993.) |
Ref | Expression |
---|---|
sseq1i.1 |
Ref | Expression |
---|---|
sseq2i |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sseq1i.1 | . 2 | |
2 | sseq2 3171 | . 2 | |
3 | 1, 2 | ax-mp 5 | 1 |
Colors of variables: wff set class |
Syntax hints: wb 104 wceq 1348 wss 3121 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-11 1499 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-in 3127 df-ss 3134 |
This theorem is referenced by: sseqtri 3181 sseqtrdi 3195 abss 3216 ssrab 3225 ssintrab 3854 iunpwss 3964 iotass 5177 dffun2 5208 ssimaex 5557 pw1fin 6888 pw1dc0el 6889 ss1o0el1o 6890 isstructim 12430 isstructr 12431 issubm 12695 bj-ssom 13971 ss1oel2o 14026 |
Copyright terms: Public domain | W3C validator |