ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sseq2i Unicode version

Theorem sseq2i 3174
Description: An equality inference for the subclass relationship. (Contributed by NM, 30-Aug-1993.)
Hypothesis
Ref Expression
sseq1i.1  |-  A  =  B
Assertion
Ref Expression
sseq2i  |-  ( C 
C_  A  <->  C  C_  B
)

Proof of Theorem sseq2i
StepHypRef Expression
1 sseq1i.1 . 2  |-  A  =  B
2 sseq2 3171 . 2  |-  ( A  =  B  ->  ( C  C_  A  <->  C  C_  B
) )
31, 2ax-mp 5 1  |-  ( C 
C_  A  <->  C  C_  B
)
Colors of variables: wff set class
Syntax hints:    <-> wb 104    = wceq 1348    C_ wss 3121
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-11 1499  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-ext 2152
This theorem depends on definitions:  df-bi 116  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-in 3127  df-ss 3134
This theorem is referenced by:  sseqtri  3181  sseqtrdi  3195  abss  3216  ssrab  3225  ssintrab  3854  iunpwss  3964  iotass  5177  dffun2  5208  ssimaex  5557  pw1fin  6888  pw1dc0el  6889  ss1o0el1o  6890  isstructim  12430  isstructr  12431  issubm  12695  bj-ssom  13971  ss1oel2o  14026
  Copyright terms: Public domain W3C validator