| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > sseq2i | Unicode version | ||
| Description: An equality inference for the subclass relationship. (Contributed by NM, 30-Aug-1993.) |
| Ref | Expression |
|---|---|
| sseq1i.1 |
|
| Ref | Expression |
|---|---|
| sseq2i |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sseq1i.1 |
. 2
| |
| 2 | sseq2 3248 |
. 2
| |
| 3 | 1, 2 | ax-mp 5 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-11 1552 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-in 3203 df-ss 3210 |
| This theorem is referenced by: sseqtri 3258 sseqtrdi 3272 abss 3293 ssrab 3302 ssintrab 3946 iunpwss 4057 iotass 5296 dffun2 5328 ssimaex 5695 pw1fin 7072 pw1dc0el 7073 ss1o0el1o 7075 isstructim 13046 isstructr 13047 issubm 13505 grpissubg 13731 issubrng 14163 umgredg 15943 bj-ssom 16299 ss1oel2o 16355 |
| Copyright terms: Public domain | W3C validator |