| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > sseq2i | Unicode version | ||
| Description: An equality inference for the subclass relationship. (Contributed by NM, 30-Aug-1993.) |
| Ref | Expression |
|---|---|
| sseq1i.1 |
|
| Ref | Expression |
|---|---|
| sseq2i |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sseq1i.1 |
. 2
| |
| 2 | sseq2 3207 |
. 2
| |
| 3 | 1, 2 | ax-mp 5 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-11 1520 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-in 3163 df-ss 3170 |
| This theorem is referenced by: sseqtri 3217 sseqtrdi 3231 abss 3252 ssrab 3261 ssintrab 3897 iunpwss 4008 iotass 5236 dffun2 5268 ssimaex 5622 pw1fin 6971 pw1dc0el 6972 ss1o0el1o 6974 isstructim 12692 isstructr 12693 issubm 13104 grpissubg 13324 issubrng 13755 bj-ssom 15582 ss1oel2o 15638 |
| Copyright terms: Public domain | W3C validator |