ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sseq2i Unicode version

Theorem sseq2i 3169
Description: An equality inference for the subclass relationship. (Contributed by NM, 30-Aug-1993.)
Hypothesis
Ref Expression
sseq1i.1  |-  A  =  B
Assertion
Ref Expression
sseq2i  |-  ( C 
C_  A  <->  C  C_  B
)

Proof of Theorem sseq2i
StepHypRef Expression
1 sseq1i.1 . 2  |-  A  =  B
2 sseq2 3166 . 2  |-  ( A  =  B  ->  ( C  C_  A  <->  C  C_  B
) )
31, 2ax-mp 5 1  |-  ( C 
C_  A  <->  C  C_  B
)
Colors of variables: wff set class
Syntax hints:    <-> wb 104    = wceq 1343    C_ wss 3116
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-11 1494  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-in 3122  df-ss 3129
This theorem is referenced by:  sseqtri  3176  sseqtrdi  3190  abss  3211  ssrab  3220  ssintrab  3847  iunpwss  3957  iotass  5170  dffun2  5198  ssimaex  5547  pw1fin  6876  pw1dc0el  6877  ss1o0el1o  6878  isstructim  12408  isstructr  12409  bj-ssom  13818  ss1oel2o  13873
  Copyright terms: Public domain W3C validator