Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > sseq2i | Unicode version |
Description: An equality inference for the subclass relationship. (Contributed by NM, 30-Aug-1993.) |
Ref | Expression |
---|---|
sseq1i.1 |
Ref | Expression |
---|---|
sseq2i |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sseq1i.1 | . 2 | |
2 | sseq2 3152 | . 2 | |
3 | 1, 2 | ax-mp 5 | 1 |
Colors of variables: wff set class |
Syntax hints: wb 104 wceq 1335 wss 3102 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1427 ax-7 1428 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-8 1484 ax-11 1486 ax-4 1490 ax-17 1506 ax-i9 1510 ax-ial 1514 ax-i5r 1515 ax-ext 2139 |
This theorem depends on definitions: df-bi 116 df-nf 1441 df-sb 1743 df-clab 2144 df-cleq 2150 df-clel 2153 df-in 3108 df-ss 3115 |
This theorem is referenced by: sseqtri 3162 sseqtrdi 3176 abss 3197 ssrab 3206 ssintrab 3830 iunpwss 3940 iotass 5149 dffun2 5177 ssimaex 5526 pw1fin 6848 pw1dc0el 6849 ss1o0el1o 6850 isstructim 12164 isstructr 12165 bj-ssom 13470 ss1oel2o 13525 |
Copyright terms: Public domain | W3C validator |