Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > sseq2i | Unicode version |
Description: An equality inference for the subclass relationship. (Contributed by NM, 30-Aug-1993.) |
Ref | Expression |
---|---|
sseq1i.1 |
Ref | Expression |
---|---|
sseq2i |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sseq1i.1 | . 2 | |
2 | sseq2 3166 | . 2 | |
3 | 1, 2 | ax-mp 5 | 1 |
Colors of variables: wff set class |
Syntax hints: wb 104 wceq 1343 wss 3116 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-11 1494 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-in 3122 df-ss 3129 |
This theorem is referenced by: sseqtri 3176 sseqtrdi 3190 abss 3211 ssrab 3220 ssintrab 3847 iunpwss 3957 iotass 5170 dffun2 5198 ssimaex 5547 pw1fin 6876 pw1dc0el 6877 ss1o0el1o 6878 isstructim 12408 isstructr 12409 bj-ssom 13818 ss1oel2o 13873 |
Copyright terms: Public domain | W3C validator |