![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > sseq2i | Unicode version |
Description: An equality inference for the subclass relationship. (Contributed by NM, 30-Aug-1993.) |
Ref | Expression |
---|---|
sseq1i.1 |
![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
sseq2i |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sseq1i.1 |
. 2
![]() ![]() ![]() ![]() | |
2 | sseq2 3203 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | 1, 2 | ax-mp 5 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-11 1517 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-in 3159 df-ss 3166 |
This theorem is referenced by: sseqtri 3213 sseqtrdi 3227 abss 3248 ssrab 3257 ssintrab 3893 iunpwss 4004 iotass 5232 dffun2 5264 ssimaex 5618 pw1fin 6966 pw1dc0el 6967 ss1o0el1o 6969 isstructim 12632 isstructr 12633 issubm 13044 grpissubg 13264 issubrng 13695 bj-ssom 15428 ss1oel2o 15484 |
Copyright terms: Public domain | W3C validator |