![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > sseq2i | Unicode version |
Description: An equality inference for the subclass relationship. (Contributed by NM, 30-Aug-1993.) |
Ref | Expression |
---|---|
sseq1i.1 |
![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
sseq2i |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sseq1i.1 |
. 2
![]() ![]() ![]() ![]() | |
2 | sseq2 3087 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | 1, 2 | ax-mp 7 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1406 ax-7 1407 ax-gen 1408 ax-ie1 1452 ax-ie2 1453 ax-8 1465 ax-11 1467 ax-4 1470 ax-17 1489 ax-i9 1493 ax-ial 1497 ax-i5r 1498 ax-ext 2097 |
This theorem depends on definitions: df-bi 116 df-nf 1420 df-sb 1719 df-clab 2102 df-cleq 2108 df-clel 2111 df-in 3043 df-ss 3050 |
This theorem is referenced by: sseqtri 3097 syl6sseq 3111 abss 3132 ssrab 3141 ssintrab 3760 iunpwss 3870 iotass 5063 dffun2 5091 ssimaex 5436 isstructim 11816 isstructr 11817 bj-ssom 12826 ss1oel2o 12881 |
Copyright terms: Public domain | W3C validator |