| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > sseq2i | Unicode version | ||
| Description: An equality inference for the subclass relationship. (Contributed by NM, 30-Aug-1993.) |
| Ref | Expression |
|---|---|
| sseq1i.1 |
|
| Ref | Expression |
|---|---|
| sseq2i |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sseq1i.1 |
. 2
| |
| 2 | sseq2 3225 |
. 2
| |
| 3 | 1, 2 | ax-mp 5 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-11 1530 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2189 |
| This theorem depends on definitions: df-bi 117 df-nf 1485 df-sb 1787 df-clab 2194 df-cleq 2200 df-clel 2203 df-in 3180 df-ss 3187 |
| This theorem is referenced by: sseqtri 3235 sseqtrdi 3249 abss 3270 ssrab 3279 ssintrab 3922 iunpwss 4033 iotass 5268 dffun2 5300 ssimaex 5663 pw1fin 7033 pw1dc0el 7034 ss1o0el1o 7036 isstructim 12961 isstructr 12962 issubm 13419 grpissubg 13645 issubrng 14076 umgredg 15849 bj-ssom 16071 ss1oel2o 16127 |
| Copyright terms: Public domain | W3C validator |