| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > sseq2i | Unicode version | ||
| Description: An equality inference for the subclass relationship. (Contributed by NM, 30-Aug-1993.) |
| Ref | Expression |
|---|---|
| sseq1i.1 |
|
| Ref | Expression |
|---|---|
| sseq2i |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sseq1i.1 |
. 2
| |
| 2 | sseq2 3217 |
. 2
| |
| 3 | 1, 2 | ax-mp 5 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-11 1529 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-ext 2187 |
| This theorem depends on definitions: df-bi 117 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-in 3172 df-ss 3179 |
| This theorem is referenced by: sseqtri 3227 sseqtrdi 3241 abss 3262 ssrab 3271 ssintrab 3908 iunpwss 4019 iotass 5250 dffun2 5282 ssimaex 5642 pw1fin 7009 pw1dc0el 7010 ss1o0el1o 7012 isstructim 12879 isstructr 12880 issubm 13337 grpissubg 13563 issubrng 13994 bj-ssom 15909 ss1oel2o 15965 |
| Copyright terms: Public domain | W3C validator |