ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ssprss Unicode version

Theorem ssprss 3828
Description: A pair as subset of a pair. (Contributed by AV, 26-Oct-2020.)
Assertion
Ref Expression
ssprss  |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( { A ,  B }  C_  { C ,  D }  <->  ( ( A  =  C  \/  A  =  D )  /\  ( B  =  C  \/  B  =  D ) ) ) )

Proof of Theorem ssprss
StepHypRef Expression
1 prssg 3824 . 2  |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( ( A  e. 
{ C ,  D }  /\  B  e.  { C ,  D }
)  <->  { A ,  B }  C_  { C ,  D } ) )
2 elprg 3686 . . 3  |-  ( A  e.  V  ->  ( A  e.  { C ,  D }  <->  ( A  =  C  \/  A  =  D ) ) )
3 elprg 3686 . . 3  |-  ( B  e.  W  ->  ( B  e.  { C ,  D }  <->  ( B  =  C  \/  B  =  D ) ) )
42, 3bi2anan9 608 . 2  |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( ( A  e. 
{ C ,  D }  /\  B  e.  { C ,  D }
)  <->  ( ( A  =  C  \/  A  =  D )  /\  ( B  =  C  \/  B  =  D )
) ) )
51, 4bitr3d 190 1  |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( { A ,  B }  C_  { C ,  D }  <->  ( ( A  =  C  \/  A  =  D )  /\  ( B  =  C  \/  B  =  D ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 713    = wceq 1395    e. wcel 2200    C_ wss 3197   {cpr 3667
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-v 2801  df-un 3201  df-in 3203  df-ss 3210  df-sn 3672  df-pr 3673
This theorem is referenced by:  ssprsseq  3829
  Copyright terms: Public domain W3C validator