Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > elprg | Unicode version |
Description: A member of an unordered pair of classes is one or the other of them. Exercise 1 of [TakeutiZaring] p. 15, generalized. (Contributed by NM, 13-Sep-1995.) |
Ref | Expression |
---|---|
elprg |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqeq1 2164 | . . 3 | |
2 | eqeq1 2164 | . . 3 | |
3 | 1, 2 | orbi12d 783 | . 2 |
4 | dfpr2 3579 | . 2 | |
5 | 3, 4 | elab2g 2859 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wb 104 wo 698 wceq 1335 wcel 2128 cpr 3561 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1427 ax-7 1428 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-8 1484 ax-10 1485 ax-11 1486 ax-i12 1487 ax-bndl 1489 ax-4 1490 ax-17 1506 ax-i9 1510 ax-ial 1514 ax-i5r 1515 ax-ext 2139 |
This theorem depends on definitions: df-bi 116 df-tru 1338 df-nf 1441 df-sb 1743 df-clab 2144 df-cleq 2150 df-clel 2153 df-nfc 2288 df-v 2714 df-un 3106 df-sn 3566 df-pr 3567 |
This theorem is referenced by: elpr 3581 elpr2 3582 elpri 3583 eldifpr 3587 eltpg 3604 prid1g 3663 preqr1g 3729 m1expeven 10448 maxclpr 11104 minmax 11111 minclpr 11118 xrminmax 11144 |
Copyright terms: Public domain | W3C validator |