ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elprg Unicode version

Theorem elprg 3580
Description: A member of an unordered pair of classes is one or the other of them. Exercise 1 of [TakeutiZaring] p. 15, generalized. (Contributed by NM, 13-Sep-1995.)
Assertion
Ref Expression
elprg  |-  ( A  e.  V  ->  ( A  e.  { B ,  C }  <->  ( A  =  B  \/  A  =  C ) ) )

Proof of Theorem elprg
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 eqeq1 2164 . . 3  |-  ( x  =  A  ->  (
x  =  B  <->  A  =  B ) )
2 eqeq1 2164 . . 3  |-  ( x  =  A  ->  (
x  =  C  <->  A  =  C ) )
31, 2orbi12d 783 . 2  |-  ( x  =  A  ->  (
( x  =  B  \/  x  =  C )  <->  ( A  =  B  \/  A  =  C ) ) )
4 dfpr2 3579 . 2  |-  { B ,  C }  =  {
x  |  ( x  =  B  \/  x  =  C ) }
53, 4elab2g 2859 1  |-  ( A  e.  V  ->  ( A  e.  { B ,  C }  <->  ( A  =  B  \/  A  =  C ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 104    \/ wo 698    = wceq 1335    e. wcel 2128   {cpr 3561
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1427  ax-7 1428  ax-gen 1429  ax-ie1 1473  ax-ie2 1474  ax-8 1484  ax-10 1485  ax-11 1486  ax-i12 1487  ax-bndl 1489  ax-4 1490  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2139
This theorem depends on definitions:  df-bi 116  df-tru 1338  df-nf 1441  df-sb 1743  df-clab 2144  df-cleq 2150  df-clel 2153  df-nfc 2288  df-v 2714  df-un 3106  df-sn 3566  df-pr 3567
This theorem is referenced by:  elpr  3581  elpr2  3582  elpri  3583  eldifpr  3587  eltpg  3604  prid1g  3663  preqr1g  3729  m1expeven  10448  maxclpr  11104  minmax  11111  minclpr  11118  xrminmax  11144
  Copyright terms: Public domain W3C validator