Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > elprg | Unicode version |
Description: A member of an unordered pair of classes is one or the other of them. Exercise 1 of [TakeutiZaring] p. 15, generalized. (Contributed by NM, 13-Sep-1995.) |
Ref | Expression |
---|---|
elprg |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqeq1 2172 | . . 3 | |
2 | eqeq1 2172 | . . 3 | |
3 | 1, 2 | orbi12d 783 | . 2 |
4 | dfpr2 3595 | . 2 | |
5 | 3, 4 | elab2g 2873 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wb 104 wo 698 wceq 1343 wcel 2136 cpr 3577 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-v 2728 df-un 3120 df-sn 3582 df-pr 3583 |
This theorem is referenced by: elpr 3597 elpr2 3598 elpri 3599 eldifpr 3603 eltpg 3621 prid1g 3680 preqr1g 3746 m1expeven 10502 maxclpr 11164 minmax 11171 minclpr 11178 xrminmax 11206 lgslem1 13541 lgsval 13545 lgsfvalg 13546 lgsfcl2 13547 lgsval2lem 13551 lgsdir2lem4 13572 lgsdir2lem5 13573 lgsdir2 13574 lgsne0 13579 |
Copyright terms: Public domain | W3C validator |