| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > elprg | Unicode version | ||
| Description: A member of an unordered pair of classes is one or the other of them. Exercise 1 of [TakeutiZaring] p. 15, generalized. (Contributed by NM, 13-Sep-1995.) |
| Ref | Expression |
|---|---|
| elprg |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqeq1 2236 |
. . 3
| |
| 2 | eqeq1 2236 |
. . 3
| |
| 3 | 1, 2 | orbi12d 798 |
. 2
|
| 4 | dfpr2 3685 |
. 2
| |
| 5 | 3, 4 | elab2g 2950 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-v 2801 df-un 3201 df-sn 3672 df-pr 3673 |
| This theorem is referenced by: elpr 3687 elpr2 3688 elpri 3689 eldifpr 3693 eltpg 3711 prid1g 3770 ssprss 3828 preqr1g 3843 m1expeven 10803 maxclpr 11728 minmax 11736 minclpr 11743 xrminmax 11771 perfectlem2 15668 lgslem1 15673 lgsval 15677 lgsfvalg 15678 lgsfcl2 15679 lgsval2lem 15683 lgsdir2lem4 15704 lgsdir2lem5 15705 lgsdir2 15706 lgsne0 15711 gausslemma2dlem0i 15730 2lgs 15777 2lgsoddprm 15786 |
| Copyright terms: Public domain | W3C validator |