ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elprg Unicode version

Theorem elprg 3639
Description: A member of an unordered pair of classes is one or the other of them. Exercise 1 of [TakeutiZaring] p. 15, generalized. (Contributed by NM, 13-Sep-1995.)
Assertion
Ref Expression
elprg  |-  ( A  e.  V  ->  ( A  e.  { B ,  C }  <->  ( A  =  B  \/  A  =  C ) ) )

Proof of Theorem elprg
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 eqeq1 2200 . . 3  |-  ( x  =  A  ->  (
x  =  B  <->  A  =  B ) )
2 eqeq1 2200 . . 3  |-  ( x  =  A  ->  (
x  =  C  <->  A  =  C ) )
31, 2orbi12d 794 . 2  |-  ( x  =  A  ->  (
( x  =  B  \/  x  =  C )  <->  ( A  =  B  \/  A  =  C ) ) )
4 dfpr2 3638 . 2  |-  { B ,  C }  =  {
x  |  ( x  =  B  \/  x  =  C ) }
53, 4elab2g 2908 1  |-  ( A  e.  V  ->  ( A  e.  { B ,  C }  <->  ( A  =  B  \/  A  =  C ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105    \/ wo 709    = wceq 1364    e. wcel 2164   {cpr 3620
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-v 2762  df-un 3158  df-sn 3625  df-pr 3626
This theorem is referenced by:  elpr  3640  elpr2  3641  elpri  3642  eldifpr  3646  eltpg  3664  prid1g  3723  preqr1g  3793  m1expeven  10660  maxclpr  11369  minmax  11376  minclpr  11383  xrminmax  11411  lgslem1  15157  lgsval  15161  lgsfvalg  15162  lgsfcl2  15163  lgsval2lem  15167  lgsdir2lem4  15188  lgsdir2lem5  15189  lgsdir2  15190  lgsne0  15195  gausslemma2dlem0i  15214  2lgs  15261  2lgsoddprm  15270
  Copyright terms: Public domain W3C validator