| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > elprg | Unicode version | ||
| Description: A member of an unordered pair of classes is one or the other of them. Exercise 1 of [TakeutiZaring] p. 15, generalized. (Contributed by NM, 13-Sep-1995.) |
| Ref | Expression |
|---|---|
| elprg |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqeq1 2213 |
. . 3
| |
| 2 | eqeq1 2213 |
. . 3
| |
| 3 | 1, 2 | orbi12d 795 |
. 2
|
| 4 | dfpr2 3657 |
. 2
| |
| 5 | 3, 4 | elab2g 2924 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2188 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-v 2775 df-un 3174 df-sn 3644 df-pr 3645 |
| This theorem is referenced by: elpr 3659 elpr2 3660 elpri 3661 eldifpr 3665 eltpg 3683 prid1g 3742 preqr1g 3813 m1expeven 10753 maxclpr 11608 minmax 11616 minclpr 11623 xrminmax 11651 perfectlem2 15547 lgslem1 15552 lgsval 15556 lgsfvalg 15557 lgsfcl2 15558 lgsval2lem 15562 lgsdir2lem4 15583 lgsdir2lem5 15584 lgsdir2 15585 lgsne0 15590 gausslemma2dlem0i 15609 2lgs 15656 2lgsoddprm 15665 |
| Copyright terms: Public domain | W3C validator |