Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > elprg | Unicode version |
Description: A member of an unordered pair of classes is one or the other of them. Exercise 1 of [TakeutiZaring] p. 15, generalized. (Contributed by NM, 13-Sep-1995.) |
Ref | Expression |
---|---|
elprg |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqeq1 2177 | . . 3 | |
2 | eqeq1 2177 | . . 3 | |
3 | 1, 2 | orbi12d 788 | . 2 |
4 | dfpr2 3602 | . 2 | |
5 | 3, 4 | elab2g 2877 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wb 104 wo 703 wceq 1348 wcel 2141 cpr 3584 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-tru 1351 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-v 2732 df-un 3125 df-sn 3589 df-pr 3590 |
This theorem is referenced by: elpr 3604 elpr2 3605 elpri 3606 eldifpr 3610 eltpg 3628 prid1g 3687 preqr1g 3753 m1expeven 10523 maxclpr 11186 minmax 11193 minclpr 11200 xrminmax 11228 lgslem1 13695 lgsval 13699 lgsfvalg 13700 lgsfcl2 13701 lgsval2lem 13705 lgsdir2lem4 13726 lgsdir2lem5 13727 lgsdir2 13728 lgsne0 13733 |
Copyright terms: Public domain | W3C validator |