ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ssprsseq Unicode version

Theorem ssprsseq 3829
Description: A proper pair is a subset of a pair iff it is equal to the superset. (Contributed by AV, 26-Oct-2020.)
Assertion
Ref Expression
ssprsseq  |-  ( ( A  e.  V  /\  B  e.  W  /\  A  =/=  B )  -> 
( { A ,  B }  C_  { C ,  D }  <->  { A ,  B }  =  { C ,  D }
) )

Proof of Theorem ssprsseq
StepHypRef Expression
1 ssprss 3828 . . . 4  |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( { A ,  B }  C_  { C ,  D }  <->  ( ( A  =  C  \/  A  =  D )  /\  ( B  =  C  \/  B  =  D ) ) ) )
213adant3 1041 . . 3  |-  ( ( A  e.  V  /\  B  e.  W  /\  A  =/=  B )  -> 
( { A ,  B }  C_  { C ,  D }  <->  ( ( A  =  C  \/  A  =  D )  /\  ( B  =  C  \/  B  =  D ) ) ) )
3 eqneqall 2410 . . . . . . . 8  |-  ( A  =  B  ->  ( A  =/=  B  ->  { A ,  B }  =  { C ,  D }
) )
4 eqtr3 2249 . . . . . . . 8  |-  ( ( A  =  C  /\  B  =  C )  ->  A  =  B )
53, 4syl11 31 . . . . . . 7  |-  ( A  =/=  B  ->  (
( A  =  C  /\  B  =  C )  ->  { A ,  B }  =  { C ,  D }
) )
653ad2ant3 1044 . . . . . 6  |-  ( ( A  e.  V  /\  B  e.  W  /\  A  =/=  B )  -> 
( ( A  =  C  /\  B  =  C )  ->  { A ,  B }  =  { C ,  D }
) )
76com12 30 . . . . 5  |-  ( ( A  =  C  /\  B  =  C )  ->  ( ( A  e.  V  /\  B  e.  W  /\  A  =/= 
B )  ->  { A ,  B }  =  { C ,  D }
) )
8 preq12 3745 . . . . . . 7  |-  ( ( A  =  D  /\  B  =  C )  ->  { A ,  B }  =  { D ,  C } )
9 prcom 3742 . . . . . . 7  |-  { D ,  C }  =  { C ,  D }
108, 9eqtrdi 2278 . . . . . 6  |-  ( ( A  =  D  /\  B  =  C )  ->  { A ,  B }  =  { C ,  D } )
1110a1d 22 . . . . 5  |-  ( ( A  =  D  /\  B  =  C )  ->  ( ( A  e.  V  /\  B  e.  W  /\  A  =/= 
B )  ->  { A ,  B }  =  { C ,  D }
) )
12 preq12 3745 . . . . . 6  |-  ( ( A  =  C  /\  B  =  D )  ->  { A ,  B }  =  { C ,  D } )
1312a1d 22 . . . . 5  |-  ( ( A  =  C  /\  B  =  D )  ->  ( ( A  e.  V  /\  B  e.  W  /\  A  =/= 
B )  ->  { A ,  B }  =  { C ,  D }
) )
14 eqtr3 2249 . . . . . . . 8  |-  ( ( A  =  D  /\  B  =  D )  ->  A  =  B )
153, 14syl11 31 . . . . . . 7  |-  ( A  =/=  B  ->  (
( A  =  D  /\  B  =  D )  ->  { A ,  B }  =  { C ,  D }
) )
16153ad2ant3 1044 . . . . . 6  |-  ( ( A  e.  V  /\  B  e.  W  /\  A  =/=  B )  -> 
( ( A  =  D  /\  B  =  D )  ->  { A ,  B }  =  { C ,  D }
) )
1716com12 30 . . . . 5  |-  ( ( A  =  D  /\  B  =  D )  ->  ( ( A  e.  V  /\  B  e.  W  /\  A  =/= 
B )  ->  { A ,  B }  =  { C ,  D }
) )
187, 11, 13, 17ccase 970 . . . 4  |-  ( ( ( A  =  C  \/  A  =  D )  /\  ( B  =  C  \/  B  =  D ) )  -> 
( ( A  e.  V  /\  B  e.  W  /\  A  =/= 
B )  ->  { A ,  B }  =  { C ,  D }
) )
1918com12 30 . . 3  |-  ( ( A  e.  V  /\  B  e.  W  /\  A  =/=  B )  -> 
( ( ( A  =  C  \/  A  =  D )  /\  ( B  =  C  \/  B  =  D )
)  ->  { A ,  B }  =  { C ,  D }
) )
202, 19sylbid 150 . 2  |-  ( ( A  e.  V  /\  B  e.  W  /\  A  =/=  B )  -> 
( { A ,  B }  C_  { C ,  D }  ->  { A ,  B }  =  { C ,  D }
) )
21 eqimss 3278 . 2  |-  ( { A ,  B }  =  { C ,  D }  ->  { A ,  B }  C_  { C ,  D } )
2220, 21impbid1 142 1  |-  ( ( A  e.  V  /\  B  e.  W  /\  A  =/=  B )  -> 
( { A ,  B }  C_  { C ,  D }  <->  { A ,  B }  =  { C ,  D }
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 713    /\ w3a 1002    = wceq 1395    e. wcel 2200    =/= wne 2400    C_ wss 3197   {cpr 3667
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-v 2801  df-un 3201  df-in 3203  df-ss 3210  df-sn 3672  df-pr 3673
This theorem is referenced by:  upgredgpr  15941
  Copyright terms: Public domain W3C validator