ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  prsspwg Unicode version

Theorem prsspwg 3793
Description: An unordered pair belongs to the power class of a class iff each member belongs to the class. (Contributed by Thierry Arnoux, 3-Oct-2016.) (Revised by NM, 18-Jan-2018.)
Assertion
Ref Expression
prsspwg  |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( { A ,  B }  C_  ~P C  <->  ( A  C_  C  /\  B  C_  C ) ) )

Proof of Theorem prsspwg
StepHypRef Expression
1 prssg 3790 . 2  |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( ( A  e. 
~P C  /\  B  e.  ~P C )  <->  { A ,  B }  C_  ~P C ) )
2 elpwg 3624 . . 3  |-  ( A  e.  V  ->  ( A  e.  ~P C  <->  A 
C_  C ) )
3 elpwg 3624 . . 3  |-  ( B  e.  W  ->  ( B  e.  ~P C  <->  B 
C_  C ) )
42, 3bi2anan9 606 . 2  |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( ( A  e. 
~P C  /\  B  e.  ~P C )  <->  ( A  C_  C  /\  B  C_  C ) ) )
51, 4bitr3d 190 1  |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( { A ,  B }  C_  ~P C  <->  ( A  C_  C  /\  B  C_  C ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    e. wcel 2176    C_ wss 3166   ~Pcpw 3616   {cpr 3634
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-ext 2187
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1484  df-sb 1786  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-v 2774  df-un 3170  df-in 3172  df-ss 3179  df-pw 3618  df-sn 3639  df-pr 3640
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator