ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  prsspwg Unicode version

Theorem prsspwg 3828
Description: An unordered pair belongs to the power class of a class iff each member belongs to the class. (Contributed by Thierry Arnoux, 3-Oct-2016.) (Revised by NM, 18-Jan-2018.)
Assertion
Ref Expression
prsspwg  |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( { A ,  B }  C_  ~P C  <->  ( A  C_  C  /\  B  C_  C ) ) )

Proof of Theorem prsspwg
StepHypRef Expression
1 prssg 3825 . 2  |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( ( A  e. 
~P C  /\  B  e.  ~P C )  <->  { A ,  B }  C_  ~P C ) )
2 elpwg 3657 . . 3  |-  ( A  e.  V  ->  ( A  e.  ~P C  <->  A 
C_  C ) )
3 elpwg 3657 . . 3  |-  ( B  e.  W  ->  ( B  e.  ~P C  <->  B 
C_  C ) )
42, 3bi2anan9 608 . 2  |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( ( A  e. 
~P C  /\  B  e.  ~P C )  <->  ( A  C_  C  /\  B  C_  C ) ) )
51, 4bitr3d 190 1  |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( { A ,  B }  C_  ~P C  <->  ( A  C_  C  /\  B  C_  C ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    e. wcel 2200    C_ wss 3197   ~Pcpw 3649   {cpr 3667
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-v 2801  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator