ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  prsspwg Unicode version

Theorem prsspwg 3711
Description: An unordered pair belongs to the power class of a class iff each member belongs to the class. (Contributed by Thierry Arnoux, 3-Oct-2016.) (Revised by NM, 18-Jan-2018.)
Assertion
Ref Expression
prsspwg  |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( { A ,  B }  C_  ~P C  <->  ( A  C_  C  /\  B  C_  C ) ) )

Proof of Theorem prsspwg
StepHypRef Expression
1 prssg 3709 . 2  |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( ( A  e. 
~P C  /\  B  e.  ~P C )  <->  { A ,  B }  C_  ~P C ) )
2 elpwg 3547 . . 3  |-  ( A  e.  V  ->  ( A  e.  ~P C  <->  A 
C_  C ) )
3 elpwg 3547 . . 3  |-  ( B  e.  W  ->  ( B  e.  ~P C  <->  B 
C_  C ) )
42, 3bi2anan9 596 . 2  |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( ( A  e. 
~P C  /\  B  e.  ~P C )  <->  ( A  C_  C  /\  B  C_  C ) ) )
51, 4bitr3d 189 1  |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( { A ,  B }  C_  ~P C  <->  ( A  C_  C  /\  B  C_  C ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    e. wcel 2125    C_ wss 3098   ~Pcpw 3539   {cpr 3557
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1481  ax-10 1482  ax-11 1483  ax-i12 1484  ax-bndl 1486  ax-4 1487  ax-17 1503  ax-i9 1507  ax-ial 1511  ax-i5r 1512  ax-ext 2136
This theorem depends on definitions:  df-bi 116  df-tru 1335  df-nf 1438  df-sb 1740  df-clab 2141  df-cleq 2147  df-clel 2150  df-nfc 2285  df-v 2711  df-un 3102  df-in 3104  df-ss 3111  df-pw 3541  df-sn 3562  df-pr 3563
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator