ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  prsspwg Unicode version

Theorem prsspwg 3804
Description: An unordered pair belongs to the power class of a class iff each member belongs to the class. (Contributed by Thierry Arnoux, 3-Oct-2016.) (Revised by NM, 18-Jan-2018.)
Assertion
Ref Expression
prsspwg  |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( { A ,  B }  C_  ~P C  <->  ( A  C_  C  /\  B  C_  C ) ) )

Proof of Theorem prsspwg
StepHypRef Expression
1 prssg 3801 . 2  |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( ( A  e. 
~P C  /\  B  e.  ~P C )  <->  { A ,  B }  C_  ~P C ) )
2 elpwg 3634 . . 3  |-  ( A  e.  V  ->  ( A  e.  ~P C  <->  A 
C_  C ) )
3 elpwg 3634 . . 3  |-  ( B  e.  W  ->  ( B  e.  ~P C  <->  B 
C_  C ) )
42, 3bi2anan9 606 . 2  |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( ( A  e. 
~P C  /\  B  e.  ~P C )  <->  ( A  C_  C  /\  B  C_  C ) ) )
51, 4bitr3d 190 1  |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( { A ,  B }  C_  ~P C  <->  ( A  C_  C  /\  B  C_  C ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    e. wcel 2178    C_ wss 3174   ~Pcpw 3626   {cpr 3644
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2189
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-v 2778  df-un 3178  df-in 3180  df-ss 3187  df-pw 3628  df-sn 3649  df-pr 3650
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator