| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > bi2anan9 | Unicode version | ||
| Description: Deduction joining two equivalences to form equivalence of conjunctions. (Contributed by NM, 31-Jul-1995.) |
| Ref | Expression |
|---|---|
| bi2an9.1 |
|
| bi2an9.2 |
|
| Ref | Expression |
|---|---|
| bi2anan9 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bi2an9.1 |
. . 3
| |
| 2 | 1 | anbi1d 465 |
. 2
|
| 3 | bi2an9.2 |
. . 3
| |
| 4 | 3 | anbi2d 464 |
. 2
|
| 5 | 2, 4 | sylan9bb 462 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: bi2anan9r 609 rspc2gv 2919 ralprg 3717 raltpg 3719 prssg 3825 prsspwg 3828 ssprss 3829 opelopab2a 4353 opelxp 4749 eqrel 4808 eqrelrel 4820 brcog 4889 dff13 5892 resoprab2 6101 ovig 6126 dfoprab4f 6339 f1o2ndf1 6374 eroveu 6773 th3qlem1 6784 th3qlem2 6785 th3q 6787 oviec 6788 endisj 6983 exmidapne 7446 dfplpq2 7541 dfmpq2 7542 ordpipqqs 7561 enq0enq 7618 mulnnnq0 7637 ltsrprg 7934 axcnre 8068 axmulgt0 8218 addltmul 9348 ltxr 9971 sumsqeq0 10840 ccat0 11131 mul0inf 11752 dvds2lem 12314 opoe 12406 omoe 12407 opeo 12408 omeo 12409 gcddvds 12484 dfgcd2 12535 pcqmul 12826 xpsfrnel2 13379 eqgval 13760 txbasval 14941 cnmpt12 14961 cnmpt22 14968 lgsquadlem3 15758 lgsquad 15759 2sqlem7 15800 |
| Copyright terms: Public domain | W3C validator |