ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  bi2anan9 Unicode version

Theorem bi2anan9 576
Description: Deduction joining two equivalences to form equivalence of conjunctions. (Contributed by NM, 31-Jul-1995.)
Hypotheses
Ref Expression
bi2an9.1  |-  ( ph  ->  ( ps  <->  ch )
)
bi2an9.2  |-  ( th 
->  ( ta  <->  et )
)
Assertion
Ref Expression
bi2anan9  |-  ( (
ph  /\  th )  ->  ( ( ps  /\  ta )  <->  ( ch  /\  et ) ) )

Proof of Theorem bi2anan9
StepHypRef Expression
1 bi2an9.1 . . 3  |-  ( ph  ->  ( ps  <->  ch )
)
21anbi1d 456 . 2  |-  ( ph  ->  ( ( ps  /\  ta )  <->  ( ch  /\  ta ) ) )
3 bi2an9.2 . . 3  |-  ( th 
->  ( ta  <->  et )
)
43anbi2d 455 . 2  |-  ( th 
->  ( ( ch  /\  ta )  <->  ( ch  /\  et ) ) )
52, 4sylan9bb 453 1  |-  ( (
ph  /\  th )  ->  ( ( ps  /\  ta )  <->  ( ch  /\  et ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107
This theorem depends on definitions:  df-bi 116
This theorem is referenced by:  bi2anan9r  577  rspc2gv  2755  ralprg  3521  raltpg  3523  prssg  3624  prsspwg  3626  opelopab2a  4125  opelxp  4507  eqrel  4566  eqrelrel  4578  brcog  4644  dff13  5601  resoprab2  5800  ovig  5824  dfoprab4f  6021  f1o2ndf1  6055  eroveu  6450  th3qlem1  6461  th3qlem2  6462  th3q  6464  oviec  6465  endisj  6647  dfplpq2  7063  dfmpq2  7064  ordpipqqs  7083  enq0enq  7140  mulnnnq0  7159  ltsrprg  7443  axcnre  7566  axmulgt0  7708  addltmul  8808  ltxr  9403  sumsqeq0  10212  mul0inf  10851  dvds2lem  11300  opoe  11387  omoe  11388  opeo  11389  omeo  11390  gcddvds  11447  dfgcd2  11495  txbasval  12217  cnmpt12  12237  cnmpt22  12244
  Copyright terms: Public domain W3C validator