Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > bi2anan9 | Unicode version |
Description: Deduction joining two equivalences to form equivalence of conjunctions. (Contributed by NM, 31-Jul-1995.) |
Ref | Expression |
---|---|
bi2an9.1 | |
bi2an9.2 |
Ref | Expression |
---|---|
bi2anan9 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bi2an9.1 | . . 3 | |
2 | 1 | anbi1d 462 | . 2 |
3 | bi2an9.2 | . . 3 | |
4 | 3 | anbi2d 461 | . 2 |
5 | 2, 4 | sylan9bb 459 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 |
This theorem depends on definitions: df-bi 116 |
This theorem is referenced by: bi2anan9r 602 rspc2gv 2846 ralprg 3634 raltpg 3636 prssg 3737 prsspwg 3739 opelopab2a 4250 opelxp 4641 eqrel 4700 eqrelrel 4712 brcog 4778 dff13 5747 resoprab2 5950 ovig 5974 dfoprab4f 6172 f1o2ndf1 6207 eroveu 6604 th3qlem1 6615 th3qlem2 6616 th3q 6618 oviec 6619 endisj 6802 dfplpq2 7316 dfmpq2 7317 ordpipqqs 7336 enq0enq 7393 mulnnnq0 7412 ltsrprg 7709 axcnre 7843 axmulgt0 7991 addltmul 9114 ltxr 9732 sumsqeq0 10554 mul0inf 11204 dvds2lem 11765 opoe 11854 omoe 11855 opeo 11856 omeo 11857 gcddvds 11918 dfgcd2 11969 pcqmul 12257 txbasval 13061 cnmpt12 13081 cnmpt22 13088 2sqlem7 13751 |
Copyright terms: Public domain | W3C validator |