![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > bi2anan9 | Unicode version |
Description: Deduction joining two equivalences to form equivalence of conjunctions. (Contributed by NM, 31-Jul-1995.) |
Ref | Expression |
---|---|
bi2an9.1 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
bi2an9.2 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
bi2anan9 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bi2an9.1 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | 1 | anbi1d 465 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
3 | bi2an9.2 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
4 | 3 | anbi2d 464 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
5 | 2, 4 | sylan9bb 462 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
This theorem depends on definitions: df-bi 117 |
This theorem is referenced by: bi2anan9r 607 rspc2gv 2876 ralprg 3669 raltpg 3671 prssg 3775 prsspwg 3778 opelopab2a 4295 opelxp 4689 eqrel 4748 eqrelrel 4760 brcog 4829 dff13 5811 resoprab2 6015 ovig 6040 dfoprab4f 6246 f1o2ndf1 6281 eroveu 6680 th3qlem1 6691 th3qlem2 6692 th3q 6694 oviec 6695 endisj 6878 exmidapne 7320 dfplpq2 7414 dfmpq2 7415 ordpipqqs 7434 enq0enq 7491 mulnnnq0 7510 ltsrprg 7807 axcnre 7941 axmulgt0 8091 addltmul 9219 ltxr 9841 sumsqeq0 10689 mul0inf 11384 dvds2lem 11946 opoe 12036 omoe 12037 opeo 12038 omeo 12039 gcddvds 12100 dfgcd2 12151 pcqmul 12441 xpsfrnel2 12929 eqgval 13293 txbasval 14435 cnmpt12 14455 cnmpt22 14462 2sqlem7 15208 |
Copyright terms: Public domain | W3C validator |