![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > bi2anan9 | Unicode version |
Description: Deduction joining two equivalences to form equivalence of conjunctions. (Contributed by NM, 31-Jul-1995.) |
Ref | Expression |
---|---|
bi2an9.1 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
bi2an9.2 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
bi2anan9 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bi2an9.1 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | 1 | anbi1d 465 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
3 | bi2an9.2 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
4 | 3 | anbi2d 464 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
5 | 2, 4 | sylan9bb 462 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
This theorem depends on definitions: df-bi 117 |
This theorem is referenced by: bi2anan9r 607 rspc2gv 2877 ralprg 3670 raltpg 3672 prssg 3776 prsspwg 3779 opelopab2a 4296 opelxp 4690 eqrel 4749 eqrelrel 4761 brcog 4830 dff13 5812 resoprab2 6016 ovig 6041 dfoprab4f 6248 f1o2ndf1 6283 eroveu 6682 th3qlem1 6693 th3qlem2 6694 th3q 6696 oviec 6697 endisj 6880 exmidapne 7322 dfplpq2 7416 dfmpq2 7417 ordpipqqs 7436 enq0enq 7493 mulnnnq0 7512 ltsrprg 7809 axcnre 7943 axmulgt0 8093 addltmul 9222 ltxr 9844 sumsqeq0 10692 mul0inf 11387 dvds2lem 11949 opoe 12039 omoe 12040 opeo 12041 omeo 12042 gcddvds 12103 dfgcd2 12154 pcqmul 12444 xpsfrnel2 12932 eqgval 13296 txbasval 14446 cnmpt12 14466 cnmpt22 14473 lgsquadlem3 15236 lgsquad 15237 2sqlem7 15278 |
Copyright terms: Public domain | W3C validator |