| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > bi2anan9 | Unicode version | ||
| Description: Deduction joining two equivalences to form equivalence of conjunctions. (Contributed by NM, 31-Jul-1995.) |
| Ref | Expression |
|---|---|
| bi2an9.1 |
|
| bi2an9.2 |
|
| Ref | Expression |
|---|---|
| bi2anan9 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bi2an9.1 |
. . 3
| |
| 2 | 1 | anbi1d 465 |
. 2
|
| 3 | bi2an9.2 |
. . 3
| |
| 4 | 3 | anbi2d 464 |
. 2
|
| 5 | 2, 4 | sylan9bb 462 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: bi2anan9r 607 rspc2gv 2889 ralprg 3684 raltpg 3686 prssg 3790 prsspwg 3793 opelopab2a 4312 opelxp 4706 eqrel 4765 eqrelrel 4777 brcog 4846 dff13 5839 resoprab2 6044 ovig 6069 dfoprab4f 6281 f1o2ndf1 6316 eroveu 6715 th3qlem1 6726 th3qlem2 6727 th3q 6729 oviec 6730 endisj 6921 exmidapne 7374 dfplpq2 7469 dfmpq2 7470 ordpipqqs 7489 enq0enq 7546 mulnnnq0 7565 ltsrprg 7862 axcnre 7996 axmulgt0 8146 addltmul 9276 ltxr 9899 sumsqeq0 10765 ccat0 11055 mul0inf 11585 dvds2lem 12147 opoe 12239 omoe 12240 opeo 12241 omeo 12242 gcddvds 12317 dfgcd2 12368 pcqmul 12659 xpsfrnel2 13211 eqgval 13592 txbasval 14772 cnmpt12 14792 cnmpt22 14799 lgsquadlem3 15589 lgsquad 15590 2sqlem7 15631 |
| Copyright terms: Public domain | W3C validator |