ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  bi2anan9 Unicode version

Theorem bi2anan9 608
Description: Deduction joining two equivalences to form equivalence of conjunctions. (Contributed by NM, 31-Jul-1995.)
Hypotheses
Ref Expression
bi2an9.1  |-  ( ph  ->  ( ps  <->  ch )
)
bi2an9.2  |-  ( th 
->  ( ta  <->  et )
)
Assertion
Ref Expression
bi2anan9  |-  ( (
ph  /\  th )  ->  ( ( ps  /\  ta )  <->  ( ch  /\  et ) ) )

Proof of Theorem bi2anan9
StepHypRef Expression
1 bi2an9.1 . . 3  |-  ( ph  ->  ( ps  <->  ch )
)
21anbi1d 465 . 2  |-  ( ph  ->  ( ( ps  /\  ta )  <->  ( ch  /\  ta ) ) )
3 bi2an9.2 . . 3  |-  ( th 
->  ( ta  <->  et )
)
43anbi2d 464 . 2  |-  ( th 
->  ( ( ch  /\  ta )  <->  ( ch  /\  et ) ) )
52, 4sylan9bb 462 1  |-  ( (
ph  /\  th )  ->  ( ( ps  /\  ta )  <->  ( ch  /\  et ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108
This theorem depends on definitions:  df-bi 117
This theorem is referenced by:  bi2anan9r  609  rspc2gv  2919  ralprg  3717  raltpg  3719  prssg  3825  prsspwg  3828  ssprss  3829  opelopab2a  4353  opelxp  4749  eqrel  4808  eqrelrel  4820  brcog  4889  dff13  5892  resoprab2  6101  ovig  6126  dfoprab4f  6339  f1o2ndf1  6374  eroveu  6773  th3qlem1  6784  th3qlem2  6785  th3q  6787  oviec  6788  endisj  6983  exmidapne  7446  dfplpq2  7541  dfmpq2  7542  ordpipqqs  7561  enq0enq  7618  mulnnnq0  7637  ltsrprg  7934  axcnre  8068  axmulgt0  8218  addltmul  9348  ltxr  9971  sumsqeq0  10840  ccat0  11131  mul0inf  11752  dvds2lem  12314  opoe  12406  omoe  12407  opeo  12408  omeo  12409  gcddvds  12484  dfgcd2  12535  pcqmul  12826  xpsfrnel2  13379  eqgval  13760  txbasval  14941  cnmpt12  14961  cnmpt22  14968  lgsquadlem3  15758  lgsquad  15759  2sqlem7  15800
  Copyright terms: Public domain W3C validator