![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > bi2anan9 | Unicode version |
Description: Deduction joining two equivalences to form equivalence of conjunctions. (Contributed by NM, 31-Jul-1995.) |
Ref | Expression |
---|---|
bi2an9.1 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
bi2an9.2 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
bi2anan9 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bi2an9.1 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | 1 | anbi1d 456 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
3 | bi2an9.2 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
4 | 3 | anbi2d 455 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
5 | 2, 4 | sylan9bb 453 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 |
This theorem depends on definitions: df-bi 116 |
This theorem is referenced by: bi2anan9r 577 rspc2gv 2755 ralprg 3521 raltpg 3523 prssg 3624 prsspwg 3626 opelopab2a 4125 opelxp 4507 eqrel 4566 eqrelrel 4578 brcog 4644 dff13 5601 resoprab2 5800 ovig 5824 dfoprab4f 6021 f1o2ndf1 6055 eroveu 6450 th3qlem1 6461 th3qlem2 6462 th3q 6464 oviec 6465 endisj 6647 dfplpq2 7063 dfmpq2 7064 ordpipqqs 7083 enq0enq 7140 mulnnnq0 7159 ltsrprg 7443 axcnre 7566 axmulgt0 7708 addltmul 8808 ltxr 9403 sumsqeq0 10212 mul0inf 10851 dvds2lem 11300 opoe 11387 omoe 11388 opeo 11389 omeo 11390 gcddvds 11447 dfgcd2 11495 txbasval 12217 cnmpt12 12237 cnmpt22 12244 |
Copyright terms: Public domain | W3C validator |