| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > prssg | Unicode version | ||
| Description: A pair of elements of a class is a subset of the class. Theorem 7.5 of [Quine] p. 49. (Contributed by NM, 22-Mar-2006.) (Proof shortened by Andrew Salmon, 29-Jun-2011.) |
| Ref | Expression |
|---|---|
| prssg |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | snssg 3767 |
. . 3
| |
| 2 | snssg 3767 |
. . 3
| |
| 3 | 1, 2 | bi2anan9 606 |
. 2
|
| 4 | unss 3347 |
. . 3
| |
| 5 | df-pr 3640 |
. . . 4
| |
| 6 | 5 | sseq1i 3219 |
. . 3
|
| 7 | 4, 6 | bitr4i 187 |
. 2
|
| 8 | 3, 7 | bitrdi 196 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-ext 2187 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-v 2774 df-un 3170 df-in 3172 df-ss 3179 df-sn 3639 df-pr 3640 |
| This theorem is referenced by: prssi 3791 prsspwg 3793 hashdmprop2dom 10989 topgele 14501 structgrssvtx 15639 structgrssiedg 15640 |
| Copyright terms: Public domain | W3C validator |