ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  prssg Unicode version

Theorem prssg 3801
Description: A pair of elements of a class is a subset of the class. Theorem 7.5 of [Quine] p. 49. (Contributed by NM, 22-Mar-2006.) (Proof shortened by Andrew Salmon, 29-Jun-2011.)
Assertion
Ref Expression
prssg  |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( ( A  e.  C  /\  B  e.  C )  <->  { A ,  B }  C_  C
) )

Proof of Theorem prssg
StepHypRef Expression
1 snssg 3778 . . 3  |-  ( A  e.  V  ->  ( A  e.  C  <->  { A }  C_  C ) )
2 snssg 3778 . . 3  |-  ( B  e.  W  ->  ( B  e.  C  <->  { B }  C_  C ) )
31, 2bi2anan9 606 . 2  |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( ( A  e.  C  /\  B  e.  C )  <->  ( { A }  C_  C  /\  { B }  C_  C
) ) )
4 unss 3355 . . 3  |-  ( ( { A }  C_  C  /\  { B }  C_  C )  <->  ( { A }  u.  { B } )  C_  C
)
5 df-pr 3650 . . . 4  |-  { A ,  B }  =  ( { A }  u.  { B } )
65sseq1i 3227 . . 3  |-  ( { A ,  B }  C_  C  <->  ( { A }  u.  { B } )  C_  C
)
74, 6bitr4i 187 . 2  |-  ( ( { A }  C_  C  /\  { B }  C_  C )  <->  { A ,  B }  C_  C
)
83, 7bitrdi 196 1  |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( ( A  e.  C  /\  B  e.  C )  <->  { A ,  B }  C_  C
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    e. wcel 2178    u. cun 3172    C_ wss 3174   {csn 3643   {cpr 3644
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2189
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-v 2778  df-un 3178  df-in 3180  df-ss 3187  df-sn 3649  df-pr 3650
This theorem is referenced by:  prssi  3802  prsspwg  3804  ssprss  3805  prelpw  4275  hashdmprop2dom  11026  topgele  14616  structgrssvtx  15756  structgrssiedg  15757
  Copyright terms: Public domain W3C validator