Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > prssg | Unicode version |
Description: A pair of elements of a class is a subset of the class. Theorem 7.5 of [Quine] p. 49. (Contributed by NM, 22-Mar-2006.) (Proof shortened by Andrew Salmon, 29-Jun-2011.) |
Ref | Expression |
---|---|
prssg |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | snssg 3709 | . . 3 | |
2 | snssg 3709 | . . 3 | |
3 | 1, 2 | bi2anan9 596 | . 2 |
4 | unss 3296 | . . 3 | |
5 | df-pr 3583 | . . . 4 | |
6 | 5 | sseq1i 3168 | . . 3 |
7 | 4, 6 | bitr4i 186 | . 2 |
8 | 3, 7 | bitrdi 195 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 wcel 2136 cun 3114 wss 3116 csn 3576 cpr 3577 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-v 2728 df-un 3120 df-in 3122 df-ss 3129 df-sn 3582 df-pr 3583 |
This theorem is referenced by: prssi 3731 prsspwg 3732 topgele 12677 |
Copyright terms: Public domain | W3C validator |