Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > prssg | Unicode version |
Description: A pair of elements of a class is a subset of the class. Theorem 7.5 of [Quine] p. 49. (Contributed by NM, 22-Mar-2006.) (Proof shortened by Andrew Salmon, 29-Jun-2011.) |
Ref | Expression |
---|---|
prssg |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | snssg 3716 | . . 3 | |
2 | snssg 3716 | . . 3 | |
3 | 1, 2 | bi2anan9 601 | . 2 |
4 | unss 3301 | . . 3 | |
5 | df-pr 3590 | . . . 4 | |
6 | 5 | sseq1i 3173 | . . 3 |
7 | 4, 6 | bitr4i 186 | . 2 |
8 | 3, 7 | bitrdi 195 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 wcel 2141 cun 3119 wss 3121 csn 3583 cpr 3584 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-tru 1351 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-v 2732 df-un 3125 df-in 3127 df-ss 3134 df-sn 3589 df-pr 3590 |
This theorem is referenced by: prssi 3738 prsspwg 3739 topgele 12821 |
Copyright terms: Public domain | W3C validator |