Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > prssg | Unicode version |
Description: A pair of elements of a class is a subset of the class. Theorem 7.5 of [Quine] p. 49. (Contributed by NM, 22-Mar-2006.) (Proof shortened by Andrew Salmon, 29-Jun-2011.) |
Ref | Expression |
---|---|
prssg |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | snssg 3723 | . . 3 | |
2 | snssg 3723 | . . 3 | |
3 | 1, 2 | bi2anan9 606 | . 2 |
4 | unss 3307 | . . 3 | |
5 | df-pr 3596 | . . . 4 | |
6 | 5 | sseq1i 3179 | . . 3 |
7 | 4, 6 | bitr4i 187 | . 2 |
8 | 3, 7 | bitrdi 196 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 104 wb 105 wcel 2146 cun 3125 wss 3127 csn 3589 cpr 3590 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1445 ax-7 1446 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-8 1502 ax-10 1503 ax-11 1504 ax-i12 1505 ax-bndl 1507 ax-4 1508 ax-17 1524 ax-i9 1528 ax-ial 1532 ax-i5r 1533 ax-ext 2157 |
This theorem depends on definitions: df-bi 117 df-tru 1356 df-nf 1459 df-sb 1761 df-clab 2162 df-cleq 2168 df-clel 2171 df-nfc 2306 df-v 2737 df-un 3131 df-in 3133 df-ss 3140 df-sn 3595 df-pr 3596 |
This theorem is referenced by: prssi 3747 prsspwg 3748 topgele 13096 |
Copyright terms: Public domain | W3C validator |