Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  sssnr Unicode version

Theorem sssnr 3603
 Description: Empty set and the singleton itself are subsets of a singleton. Concerning the converse, see exmidsssn 4040. (Contributed by Jim Kingdon, 10-Aug-2018.)
Assertion
Ref Expression
sssnr

Proof of Theorem sssnr
StepHypRef Expression
1 0ss 3325 . . 3
2 sseq1 3048 . . 3
31, 2mpbiri 167 . 2
4 eqimss 3079 . 2
53, 4jaoi 672 1
 Colors of variables: wff set class Syntax hints:   wi 4   wo 665   wceq 1290   wss 3000  c0 3287  csn 3450 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 580  ax-in2 581  ax-io 666  ax-5 1382  ax-7 1383  ax-gen 1384  ax-ie1 1428  ax-ie2 1429  ax-8 1441  ax-10 1442  ax-11 1443  ax-i12 1444  ax-bndl 1445  ax-4 1446  ax-17 1465  ax-i9 1469  ax-ial 1473  ax-i5r 1474  ax-ext 2071 This theorem depends on definitions:  df-bi 116  df-tru 1293  df-nf 1396  df-sb 1694  df-clab 2076  df-cleq 2082  df-clel 2085  df-nfc 2218  df-v 2622  df-dif 3002  df-in 3006  df-ss 3013  df-nul 3288 This theorem is referenced by:  pwsnss  3653
 Copyright terms: Public domain W3C validator