ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sssnr Unicode version

Theorem sssnr 3740
Description: Empty set and the singleton itself are subsets of a singleton. Concerning the converse, see exmidsssn 4188. (Contributed by Jim Kingdon, 10-Aug-2018.)
Assertion
Ref Expression
sssnr  |-  ( ( A  =  (/)  \/  A  =  { B } )  ->  A  C_  { B } )

Proof of Theorem sssnr
StepHypRef Expression
1 0ss 3453 . . 3  |-  (/)  C_  { B }
2 sseq1 3170 . . 3  |-  ( A  =  (/)  ->  ( A 
C_  { B }  <->  (/)  C_ 
{ B } ) )
31, 2mpbiri 167 . 2  |-  ( A  =  (/)  ->  A  C_  { B } )
4 eqimss 3201 . 2  |-  ( A  =  { B }  ->  A  C_  { B } )
53, 4jaoi 711 1  |-  ( ( A  =  (/)  \/  A  =  { B } )  ->  A  C_  { B } )
Colors of variables: wff set class
Syntax hints:    -> wi 4    \/ wo 703    = wceq 1348    C_ wss 3121   (/)c0 3414   {csn 3583
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-ext 2152
This theorem depends on definitions:  df-bi 116  df-tru 1351  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-v 2732  df-dif 3123  df-in 3127  df-ss 3134  df-nul 3415
This theorem is referenced by:  pwsnss  3790
  Copyright terms: Public domain W3C validator