| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > exmidsssn | Unicode version | ||
| Description: Excluded middle is equivalent to the biconditionalized version of sssnr 3784 for sets. (Contributed by Jim Kingdon, 5-Mar-2023.) |
| Ref | Expression |
|---|---|
| exmidsssn |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0ss 3490 |
. . . . . . 7
| |
| 2 | sseq1 3207 |
. . . . . . 7
| |
| 3 | 1, 2 | mpbiri 168 |
. . . . . 6
|
| 4 | 3 | adantl 277 |
. . . . 5
|
| 5 | simpr 110 |
. . . . . 6
| |
| 6 | 5 | orcd 734 |
. . . . 5
|
| 7 | 4, 6 | 2thd 175 |
. . . 4
|
| 8 | sssnm 3785 |
. . . . . 6
| |
| 9 | neq0r 3466 |
. . . . . . 7
| |
| 10 | biorf 745 |
. . . . . . 7
| |
| 11 | 9, 10 | syl 14 |
. . . . . 6
|
| 12 | 8, 11 | bitrd 188 |
. . . . 5
|
| 13 | 12 | adantl 277 |
. . . 4
|
| 14 | exmidn0m 4235 |
. . . . . 6
| |
| 15 | 14 | biimpi 120 |
. . . . 5
|
| 16 | 15 | 19.21bi 1572 |
. . . 4
|
| 17 | 7, 13, 16 | mpjaodan 799 |
. . 3
|
| 18 | 17 | alrimivv 1889 |
. 2
|
| 19 | 0ex 4161 |
. . . . . 6
| |
| 20 | sneq 3634 |
. . . . . . . 8
| |
| 21 | 20 | sseq2d 3214 |
. . . . . . 7
|
| 22 | 20 | eqeq2d 2208 |
. . . . . . . 8
|
| 23 | 22 | orbi2d 791 |
. . . . . . 7
|
| 24 | 21, 23 | bibi12d 235 |
. . . . . 6
|
| 25 | 19, 24 | spcv 2858 |
. . . . 5
|
| 26 | 25 | biimpd 144 |
. . . 4
|
| 27 | 26 | alimi 1469 |
. . 3
|
| 28 | exmid01 4232 |
. . 3
| |
| 29 | 27, 28 | sylibr 134 |
. 2
|
| 30 | 18, 29 | impbii 126 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-14 2170 ax-ext 2178 ax-sep 4152 ax-nul 4160 ax-pow 4208 |
| This theorem depends on definitions: df-bi 117 df-dc 836 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-rab 2484 df-v 2765 df-dif 3159 df-in 3163 df-ss 3170 df-nul 3452 df-pw 3608 df-sn 3629 df-exmid 4229 |
| This theorem is referenced by: exmidsssnc 4237 |
| Copyright terms: Public domain | W3C validator |