ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  exmidsssn Unicode version

Theorem exmidsssn 4246
Description: Excluded middle is equivalent to the biconditionalized version of sssnr 3794 for sets. (Contributed by Jim Kingdon, 5-Mar-2023.)
Assertion
Ref Expression
exmidsssn  |-  (EXMID  <->  A. x A. y ( x  C_  { y }  <->  ( x  =  (/)  \/  x  =  { y } ) ) )
Distinct variable group:    x, y

Proof of Theorem exmidsssn
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 0ss 3499 . . . . . . 7  |-  (/)  C_  { y }
2 sseq1 3216 . . . . . . 7  |-  ( x  =  (/)  ->  ( x 
C_  { y }  <->  (/)  C_  { y } ) )
31, 2mpbiri 168 . . . . . 6  |-  ( x  =  (/)  ->  x  C_  { y } )
43adantl 277 . . . . 5  |-  ( (EXMID  /\  x  =  (/) )  ->  x  C_  { y } )
5 simpr 110 . . . . . 6  |-  ( (EXMID  /\  x  =  (/) )  ->  x  =  (/) )
65orcd 735 . . . . 5  |-  ( (EXMID  /\  x  =  (/) )  -> 
( x  =  (/)  \/  x  =  { y } ) )
74, 62thd 175 . . . 4  |-  ( (EXMID  /\  x  =  (/) )  -> 
( x  C_  { y }  <->  ( x  =  (/)  \/  x  =  {
y } ) ) )
8 sssnm 3795 . . . . . 6  |-  ( E. z  z  e.  x  ->  ( x  C_  { y }  <->  x  =  {
y } ) )
9 neq0r 3475 . . . . . . 7  |-  ( E. z  z  e.  x  ->  -.  x  =  (/) )
10 biorf 746 . . . . . . 7  |-  ( -.  x  =  (/)  ->  (
x  =  { y }  <->  ( x  =  (/)  \/  x  =  {
y } ) ) )
119, 10syl 14 . . . . . 6  |-  ( E. z  z  e.  x  ->  ( x  =  {
y }  <->  ( x  =  (/)  \/  x  =  { y } ) ) )
128, 11bitrd 188 . . . . 5  |-  ( E. z  z  e.  x  ->  ( x  C_  { y }  <->  ( x  =  (/)  \/  x  =  {
y } ) ) )
1312adantl 277 . . . 4  |-  ( (EXMID  /\ 
E. z  z  e.  x )  ->  (
x  C_  { y } 
<->  ( x  =  (/)  \/  x  =  { y } ) ) )
14 exmidn0m 4245 . . . . . 6  |-  (EXMID  <->  A. x
( x  =  (/)  \/ 
E. z  z  e.  x ) )
1514biimpi 120 . . . . 5  |-  (EXMID  ->  A. x
( x  =  (/)  \/ 
E. z  z  e.  x ) )
161519.21bi 1581 . . . 4  |-  (EXMID  ->  (
x  =  (/)  \/  E. z  z  e.  x
) )
177, 13, 16mpjaodan 800 . . 3  |-  (EXMID  ->  (
x  C_  { y } 
<->  ( x  =  (/)  \/  x  =  { y } ) ) )
1817alrimivv 1898 . 2  |-  (EXMID  ->  A. x A. y ( x  C_  { y }  <->  ( x  =  (/)  \/  x  =  { y } ) ) )
19 0ex 4171 . . . . . 6  |-  (/)  e.  _V
20 sneq 3644 . . . . . . . 8  |-  ( y  =  (/)  ->  { y }  =  { (/) } )
2120sseq2d 3223 . . . . . . 7  |-  ( y  =  (/)  ->  ( x 
C_  { y }  <-> 
x  C_  { (/) } ) )
2220eqeq2d 2217 . . . . . . . 8  |-  ( y  =  (/)  ->  ( x  =  { y }  <-> 
x  =  { (/) } ) )
2322orbi2d 792 . . . . . . 7  |-  ( y  =  (/)  ->  ( ( x  =  (/)  \/  x  =  { y } )  <-> 
( x  =  (/)  \/  x  =  { (/) } ) ) )
2421, 23bibi12d 235 . . . . . 6  |-  ( y  =  (/)  ->  ( ( x  C_  { y } 
<->  ( x  =  (/)  \/  x  =  { y } ) )  <->  ( x  C_ 
{ (/) }  <->  ( x  =  (/)  \/  x  =  { (/) } ) ) ) )
2519, 24spcv 2867 . . . . 5  |-  ( A. y ( x  C_  { y }  <->  ( x  =  (/)  \/  x  =  { y } ) )  ->  ( x  C_ 
{ (/) }  <->  ( x  =  (/)  \/  x  =  { (/) } ) ) )
2625biimpd 144 . . . 4  |-  ( A. y ( x  C_  { y }  <->  ( x  =  (/)  \/  x  =  { y } ) )  ->  ( x  C_ 
{ (/) }  ->  (
x  =  (/)  \/  x  =  { (/) } ) ) )
2726alimi 1478 . . 3  |-  ( A. x A. y ( x 
C_  { y }  <-> 
( x  =  (/)  \/  x  =  { y } ) )  ->  A. x ( x  C_  {
(/) }  ->  ( x  =  (/)  \/  x  =  { (/) } ) ) )
28 exmid01 4242 . . 3  |-  (EXMID  <->  A. x
( x  C_  { (/) }  ->  ( x  =  (/)  \/  x  =  { (/)
} ) ) )
2927, 28sylibr 134 . 2  |-  ( A. x A. y ( x 
C_  { y }  <-> 
( x  =  (/)  \/  x  =  { y } ) )  -> EXMID )
3018, 29impbii 126 1  |-  (EXMID  <->  A. x A. y ( x  C_  { y }  <->  ( x  =  (/)  \/  x  =  { y } ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 710   A.wal 1371    = wceq 1373   E.wex 1515    C_ wss 3166   (/)c0 3460   {csn 3633  EXMIDwem 4238
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-14 2179  ax-ext 2187  ax-sep 4162  ax-nul 4170  ax-pow 4218
This theorem depends on definitions:  df-bi 117  df-dc 837  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-rab 2493  df-v 2774  df-dif 3168  df-in 3172  df-ss 3179  df-nul 3461  df-pw 3618  df-sn 3639  df-exmid 4239
This theorem is referenced by:  exmidsssnc  4247
  Copyright terms: Public domain W3C validator