Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > exmidsssn | Unicode version |
Description: Excluded middle is equivalent to the biconditionalized version of sssnr 3733 for sets. (Contributed by Jim Kingdon, 5-Mar-2023.) |
Ref | Expression |
---|---|
exmidsssn | EXMID |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0ss 3447 | . . . . . . 7 | |
2 | sseq1 3165 | . . . . . . 7 | |
3 | 1, 2 | mpbiri 167 | . . . . . 6 |
4 | 3 | adantl 275 | . . . . 5 EXMID |
5 | simpr 109 | . . . . . 6 EXMID | |
6 | 5 | orcd 723 | . . . . 5 EXMID |
7 | 4, 6 | 2thd 174 | . . . 4 EXMID |
8 | sssnm 3734 | . . . . . 6 | |
9 | neq0r 3423 | . . . . . . 7 | |
10 | biorf 734 | . . . . . . 7 | |
11 | 9, 10 | syl 14 | . . . . . 6 |
12 | 8, 11 | bitrd 187 | . . . . 5 |
13 | 12 | adantl 275 | . . . 4 EXMID |
14 | exmidn0m 4180 | . . . . . 6 EXMID | |
15 | 14 | biimpi 119 | . . . . 5 EXMID |
16 | 15 | 19.21bi 1546 | . . . 4 EXMID |
17 | 7, 13, 16 | mpjaodan 788 | . . 3 EXMID |
18 | 17 | alrimivv 1863 | . 2 EXMID |
19 | 0ex 4109 | . . . . . 6 | |
20 | sneq 3587 | . . . . . . . 8 | |
21 | 20 | sseq2d 3172 | . . . . . . 7 |
22 | 20 | eqeq2d 2177 | . . . . . . . 8 |
23 | 22 | orbi2d 780 | . . . . . . 7 |
24 | 21, 23 | bibi12d 234 | . . . . . 6 |
25 | 19, 24 | spcv 2820 | . . . . 5 |
26 | 25 | biimpd 143 | . . . 4 |
27 | 26 | alimi 1443 | . . 3 |
28 | exmid01 4177 | . . 3 EXMID | |
29 | 27, 28 | sylibr 133 | . 2 EXMID |
30 | 18, 29 | impbii 125 | 1 EXMID |
Colors of variables: wff set class |
Syntax hints: wn 3 wi 4 wa 103 wb 104 wo 698 wal 1341 wceq 1343 wex 1480 wss 3116 c0 3409 csn 3576 EXMIDwem 4173 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-nul 4108 ax-pow 4153 |
This theorem depends on definitions: df-bi 116 df-dc 825 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ne 2337 df-rab 2453 df-v 2728 df-dif 3118 df-in 3122 df-ss 3129 df-nul 3410 df-pw 3561 df-sn 3582 df-exmid 4174 |
This theorem is referenced by: exmidsssnc 4182 |
Copyright terms: Public domain | W3C validator |