| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > exmidsssn | Unicode version | ||
| Description: Excluded middle is equivalent to the biconditionalized version of sssnr 3794 for sets. (Contributed by Jim Kingdon, 5-Mar-2023.) |
| Ref | Expression |
|---|---|
| exmidsssn |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0ss 3499 |
. . . . . . 7
| |
| 2 | sseq1 3216 |
. . . . . . 7
| |
| 3 | 1, 2 | mpbiri 168 |
. . . . . 6
|
| 4 | 3 | adantl 277 |
. . . . 5
|
| 5 | simpr 110 |
. . . . . 6
| |
| 6 | 5 | orcd 735 |
. . . . 5
|
| 7 | 4, 6 | 2thd 175 |
. . . 4
|
| 8 | sssnm 3795 |
. . . . . 6
| |
| 9 | neq0r 3475 |
. . . . . . 7
| |
| 10 | biorf 746 |
. . . . . . 7
| |
| 11 | 9, 10 | syl 14 |
. . . . . 6
|
| 12 | 8, 11 | bitrd 188 |
. . . . 5
|
| 13 | 12 | adantl 277 |
. . . 4
|
| 14 | exmidn0m 4245 |
. . . . . 6
| |
| 15 | 14 | biimpi 120 |
. . . . 5
|
| 16 | 15 | 19.21bi 1581 |
. . . 4
|
| 17 | 7, 13, 16 | mpjaodan 800 |
. . 3
|
| 18 | 17 | alrimivv 1898 |
. 2
|
| 19 | 0ex 4171 |
. . . . . 6
| |
| 20 | sneq 3644 |
. . . . . . . 8
| |
| 21 | 20 | sseq2d 3223 |
. . . . . . 7
|
| 22 | 20 | eqeq2d 2217 |
. . . . . . . 8
|
| 23 | 22 | orbi2d 792 |
. . . . . . 7
|
| 24 | 21, 23 | bibi12d 235 |
. . . . . 6
|
| 25 | 19, 24 | spcv 2867 |
. . . . 5
|
| 26 | 25 | biimpd 144 |
. . . 4
|
| 27 | 26 | alimi 1478 |
. . 3
|
| 28 | exmid01 4242 |
. . 3
| |
| 29 | 27, 28 | sylibr 134 |
. 2
|
| 30 | 18, 29 | impbii 126 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-14 2179 ax-ext 2187 ax-sep 4162 ax-nul 4170 ax-pow 4218 |
| This theorem depends on definitions: df-bi 117 df-dc 837 df-tru 1376 df-fal 1379 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ne 2377 df-rab 2493 df-v 2774 df-dif 3168 df-in 3172 df-ss 3179 df-nul 3461 df-pw 3618 df-sn 3639 df-exmid 4239 |
| This theorem is referenced by: exmidsssnc 4247 |
| Copyright terms: Public domain | W3C validator |