ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  exmidsssn Unicode version

Theorem exmidsssn 4181
Description: Excluded middle is equivalent to the biconditionalized version of sssnr 3733 for sets. (Contributed by Jim Kingdon, 5-Mar-2023.)
Assertion
Ref Expression
exmidsssn  |-  (EXMID  <->  A. x A. y ( x  C_  { y }  <->  ( x  =  (/)  \/  x  =  { y } ) ) )
Distinct variable group:    x, y

Proof of Theorem exmidsssn
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 0ss 3447 . . . . . . 7  |-  (/)  C_  { y }
2 sseq1 3165 . . . . . . 7  |-  ( x  =  (/)  ->  ( x 
C_  { y }  <->  (/)  C_  { y } ) )
31, 2mpbiri 167 . . . . . 6  |-  ( x  =  (/)  ->  x  C_  { y } )
43adantl 275 . . . . 5  |-  ( (EXMID  /\  x  =  (/) )  ->  x  C_  { y } )
5 simpr 109 . . . . . 6  |-  ( (EXMID  /\  x  =  (/) )  ->  x  =  (/) )
65orcd 723 . . . . 5  |-  ( (EXMID  /\  x  =  (/) )  -> 
( x  =  (/)  \/  x  =  { y } ) )
74, 62thd 174 . . . 4  |-  ( (EXMID  /\  x  =  (/) )  -> 
( x  C_  { y }  <->  ( x  =  (/)  \/  x  =  {
y } ) ) )
8 sssnm 3734 . . . . . 6  |-  ( E. z  z  e.  x  ->  ( x  C_  { y }  <->  x  =  {
y } ) )
9 neq0r 3423 . . . . . . 7  |-  ( E. z  z  e.  x  ->  -.  x  =  (/) )
10 biorf 734 . . . . . . 7  |-  ( -.  x  =  (/)  ->  (
x  =  { y }  <->  ( x  =  (/)  \/  x  =  {
y } ) ) )
119, 10syl 14 . . . . . 6  |-  ( E. z  z  e.  x  ->  ( x  =  {
y }  <->  ( x  =  (/)  \/  x  =  { y } ) ) )
128, 11bitrd 187 . . . . 5  |-  ( E. z  z  e.  x  ->  ( x  C_  { y }  <->  ( x  =  (/)  \/  x  =  {
y } ) ) )
1312adantl 275 . . . 4  |-  ( (EXMID  /\ 
E. z  z  e.  x )  ->  (
x  C_  { y } 
<->  ( x  =  (/)  \/  x  =  { y } ) ) )
14 exmidn0m 4180 . . . . . 6  |-  (EXMID  <->  A. x
( x  =  (/)  \/ 
E. z  z  e.  x ) )
1514biimpi 119 . . . . 5  |-  (EXMID  ->  A. x
( x  =  (/)  \/ 
E. z  z  e.  x ) )
161519.21bi 1546 . . . 4  |-  (EXMID  ->  (
x  =  (/)  \/  E. z  z  e.  x
) )
177, 13, 16mpjaodan 788 . . 3  |-  (EXMID  ->  (
x  C_  { y } 
<->  ( x  =  (/)  \/  x  =  { y } ) ) )
1817alrimivv 1863 . 2  |-  (EXMID  ->  A. x A. y ( x  C_  { y }  <->  ( x  =  (/)  \/  x  =  { y } ) ) )
19 0ex 4109 . . . . . 6  |-  (/)  e.  _V
20 sneq 3587 . . . . . . . 8  |-  ( y  =  (/)  ->  { y }  =  { (/) } )
2120sseq2d 3172 . . . . . . 7  |-  ( y  =  (/)  ->  ( x 
C_  { y }  <-> 
x  C_  { (/) } ) )
2220eqeq2d 2177 . . . . . . . 8  |-  ( y  =  (/)  ->  ( x  =  { y }  <-> 
x  =  { (/) } ) )
2322orbi2d 780 . . . . . . 7  |-  ( y  =  (/)  ->  ( ( x  =  (/)  \/  x  =  { y } )  <-> 
( x  =  (/)  \/  x  =  { (/) } ) ) )
2421, 23bibi12d 234 . . . . . 6  |-  ( y  =  (/)  ->  ( ( x  C_  { y } 
<->  ( x  =  (/)  \/  x  =  { y } ) )  <->  ( x  C_ 
{ (/) }  <->  ( x  =  (/)  \/  x  =  { (/) } ) ) ) )
2519, 24spcv 2820 . . . . 5  |-  ( A. y ( x  C_  { y }  <->  ( x  =  (/)  \/  x  =  { y } ) )  ->  ( x  C_ 
{ (/) }  <->  ( x  =  (/)  \/  x  =  { (/) } ) ) )
2625biimpd 143 . . . 4  |-  ( A. y ( x  C_  { y }  <->  ( x  =  (/)  \/  x  =  { y } ) )  ->  ( x  C_ 
{ (/) }  ->  (
x  =  (/)  \/  x  =  { (/) } ) ) )
2726alimi 1443 . . 3  |-  ( A. x A. y ( x 
C_  { y }  <-> 
( x  =  (/)  \/  x  =  { y } ) )  ->  A. x ( x  C_  {
(/) }  ->  ( x  =  (/)  \/  x  =  { (/) } ) ) )
28 exmid01 4177 . . 3  |-  (EXMID  <->  A. x
( x  C_  { (/) }  ->  ( x  =  (/)  \/  x  =  { (/)
} ) ) )
2927, 28sylibr 133 . 2  |-  ( A. x A. y ( x 
C_  { y }  <-> 
( x  =  (/)  \/  x  =  { y } ) )  -> EXMID )
3018, 29impbii 125 1  |-  (EXMID  <->  A. x A. y ( x  C_  { y }  <->  ( x  =  (/)  \/  x  =  { y } ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 103    <-> wb 104    \/ wo 698   A.wal 1341    = wceq 1343   E.wex 1480    C_ wss 3116   (/)c0 3409   {csn 3576  EXMIDwem 4173
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-nul 4108  ax-pow 4153
This theorem depends on definitions:  df-bi 116  df-dc 825  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-rab 2453  df-v 2728  df-dif 3118  df-in 3122  df-ss 3129  df-nul 3410  df-pw 3561  df-sn 3582  df-exmid 4174
This theorem is referenced by:  exmidsssnc  4182
  Copyright terms: Public domain W3C validator