ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  exmidsssn Unicode version

Theorem exmidsssn 4125
Description: Excluded middle is equivalent to the biconditionalized version of sssnr 3680 for sets. (Contributed by Jim Kingdon, 5-Mar-2023.)
Assertion
Ref Expression
exmidsssn  |-  (EXMID  <->  A. x A. y ( x  C_  { y }  <->  ( x  =  (/)  \/  x  =  { y } ) ) )
Distinct variable group:    x, y

Proof of Theorem exmidsssn
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 0ss 3401 . . . . . . 7  |-  (/)  C_  { y }
2 sseq1 3120 . . . . . . 7  |-  ( x  =  (/)  ->  ( x 
C_  { y }  <->  (/)  C_  { y } ) )
31, 2mpbiri 167 . . . . . 6  |-  ( x  =  (/)  ->  x  C_  { y } )
43adantl 275 . . . . 5  |-  ( (EXMID  /\  x  =  (/) )  ->  x  C_  { y } )
5 simpr 109 . . . . . 6  |-  ( (EXMID  /\  x  =  (/) )  ->  x  =  (/) )
65orcd 722 . . . . 5  |-  ( (EXMID  /\  x  =  (/) )  -> 
( x  =  (/)  \/  x  =  { y } ) )
74, 62thd 174 . . . 4  |-  ( (EXMID  /\  x  =  (/) )  -> 
( x  C_  { y }  <->  ( x  =  (/)  \/  x  =  {
y } ) ) )
8 sssnm 3681 . . . . . 6  |-  ( E. z  z  e.  x  ->  ( x  C_  { y }  <->  x  =  {
y } ) )
9 neq0r 3377 . . . . . . 7  |-  ( E. z  z  e.  x  ->  -.  x  =  (/) )
10 biorf 733 . . . . . . 7  |-  ( -.  x  =  (/)  ->  (
x  =  { y }  <->  ( x  =  (/)  \/  x  =  {
y } ) ) )
119, 10syl 14 . . . . . 6  |-  ( E. z  z  e.  x  ->  ( x  =  {
y }  <->  ( x  =  (/)  \/  x  =  { y } ) ) )
128, 11bitrd 187 . . . . 5  |-  ( E. z  z  e.  x  ->  ( x  C_  { y }  <->  ( x  =  (/)  \/  x  =  {
y } ) ) )
1312adantl 275 . . . 4  |-  ( (EXMID  /\ 
E. z  z  e.  x )  ->  (
x  C_  { y } 
<->  ( x  =  (/)  \/  x  =  { y } ) ) )
14 exmidn0m 4124 . . . . . 6  |-  (EXMID  <->  A. x
( x  =  (/)  \/ 
E. z  z  e.  x ) )
1514biimpi 119 . . . . 5  |-  (EXMID  ->  A. x
( x  =  (/)  \/ 
E. z  z  e.  x ) )
161519.21bi 1537 . . . 4  |-  (EXMID  ->  (
x  =  (/)  \/  E. z  z  e.  x
) )
177, 13, 16mpjaodan 787 . . 3  |-  (EXMID  ->  (
x  C_  { y } 
<->  ( x  =  (/)  \/  x  =  { y } ) ) )
1817alrimivv 1847 . 2  |-  (EXMID  ->  A. x A. y ( x  C_  { y }  <->  ( x  =  (/)  \/  x  =  { y } ) ) )
19 0ex 4055 . . . . . 6  |-  (/)  e.  _V
20 sneq 3538 . . . . . . . 8  |-  ( y  =  (/)  ->  { y }  =  { (/) } )
2120sseq2d 3127 . . . . . . 7  |-  ( y  =  (/)  ->  ( x 
C_  { y }  <-> 
x  C_  { (/) } ) )
2220eqeq2d 2151 . . . . . . . 8  |-  ( y  =  (/)  ->  ( x  =  { y }  <-> 
x  =  { (/) } ) )
2322orbi2d 779 . . . . . . 7  |-  ( y  =  (/)  ->  ( ( x  =  (/)  \/  x  =  { y } )  <-> 
( x  =  (/)  \/  x  =  { (/) } ) ) )
2421, 23bibi12d 234 . . . . . 6  |-  ( y  =  (/)  ->  ( ( x  C_  { y } 
<->  ( x  =  (/)  \/  x  =  { y } ) )  <->  ( x  C_ 
{ (/) }  <->  ( x  =  (/)  \/  x  =  { (/) } ) ) ) )
2519, 24spcv 2779 . . . . 5  |-  ( A. y ( x  C_  { y }  <->  ( x  =  (/)  \/  x  =  { y } ) )  ->  ( x  C_ 
{ (/) }  <->  ( x  =  (/)  \/  x  =  { (/) } ) ) )
2625biimpd 143 . . . 4  |-  ( A. y ( x  C_  { y }  <->  ( x  =  (/)  \/  x  =  { y } ) )  ->  ( x  C_ 
{ (/) }  ->  (
x  =  (/)  \/  x  =  { (/) } ) ) )
2726alimi 1431 . . 3  |-  ( A. x A. y ( x 
C_  { y }  <-> 
( x  =  (/)  \/  x  =  { y } ) )  ->  A. x ( x  C_  {
(/) }  ->  ( x  =  (/)  \/  x  =  { (/) } ) ) )
28 exmid01 4121 . . 3  |-  (EXMID  <->  A. x
( x  C_  { (/) }  ->  ( x  =  (/)  \/  x  =  { (/)
} ) ) )
2927, 28sylibr 133 . 2  |-  ( A. x A. y ( x 
C_  { y }  <-> 
( x  =  (/)  \/  x  =  { y } ) )  -> EXMID )
3018, 29impbii 125 1  |-  (EXMID  <->  A. x A. y ( x  C_  { y }  <->  ( x  =  (/)  \/  x  =  { y } ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 103    <-> wb 104    \/ wo 697   A.wal 1329    = wceq 1331   E.wex 1468    C_ wss 3071   (/)c0 3363   {csn 3527  EXMIDwem 4118
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-sep 4046  ax-nul 4054  ax-pow 4098
This theorem depends on definitions:  df-bi 116  df-dc 820  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-rab 2425  df-v 2688  df-dif 3073  df-in 3077  df-ss 3084  df-nul 3364  df-pw 3512  df-sn 3533  df-exmid 4119
This theorem is referenced by:  exmidsssnc  4126
  Copyright terms: Public domain W3C validator