Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > pwsnss | Unicode version |
Description: The power set of a singleton. (Contributed by Jim Kingdon, 12-Aug-2018.) |
Ref | Expression |
---|---|
pwsnss |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sssnr 3749 | . . 3 | |
2 | 1 | ss2abi 3225 | . 2 |
3 | dfpr2 3608 | . 2 | |
4 | df-pw 3574 | . 2 | |
5 | 2, 3, 4 | 3sstr4i 3194 | 1 |
Colors of variables: wff set class |
Syntax hints: wo 708 wceq 1353 cab 2161 wss 3127 c0 3420 cpw 3572 csn 3589 cpr 3590 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1445 ax-7 1446 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-8 1502 ax-10 1503 ax-11 1504 ax-i12 1505 ax-bndl 1507 ax-4 1508 ax-17 1524 ax-i9 1528 ax-ial 1532 ax-i5r 1533 ax-ext 2157 |
This theorem depends on definitions: df-bi 117 df-tru 1356 df-nf 1459 df-sb 1761 df-clab 2162 df-cleq 2168 df-clel 2171 df-nfc 2306 df-v 2737 df-dif 3129 df-un 3131 df-in 3133 df-ss 3140 df-nul 3421 df-pw 3574 df-sn 3595 df-pr 3596 |
This theorem is referenced by: pwpw0ss 3800 |
Copyright terms: Public domain | W3C validator |