ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pwsnss Unicode version

Theorem pwsnss 3833
Description: The power set of a singleton. (Contributed by Jim Kingdon, 12-Aug-2018.)
Assertion
Ref Expression
pwsnss  |-  { (/) ,  { A } }  C_ 
~P { A }

Proof of Theorem pwsnss
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 sssnr 3783 . . 3  |-  ( ( x  =  (/)  \/  x  =  { A } )  ->  x  C_  { A } )
21ss2abi 3255 . 2  |-  { x  |  ( x  =  (/)  \/  x  =  { A } ) }  C_  { x  |  x  C_  { A } }
3 dfpr2 3641 . 2  |-  { (/) ,  { A } }  =  { x  |  ( x  =  (/)  \/  x  =  { A } ) }
4 df-pw 3607 . 2  |-  ~P { A }  =  {
x  |  x  C_  { A } }
52, 3, 43sstr4i 3224 1  |-  { (/) ,  { A } }  C_ 
~P { A }
Colors of variables: wff set class
Syntax hints:    \/ wo 709    = wceq 1364   {cab 2182    C_ wss 3157   (/)c0 3450   ~Pcpw 3605   {csn 3622   {cpr 3623
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-v 2765  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-pw 3607  df-sn 3628  df-pr 3629
This theorem is referenced by:  pwpw0ss  3834
  Copyright terms: Public domain W3C validator