ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pwsnss Unicode version

Theorem pwsnss 3844
Description: The power set of a singleton. (Contributed by Jim Kingdon, 12-Aug-2018.)
Assertion
Ref Expression
pwsnss  |-  { (/) ,  { A } }  C_ 
~P { A }

Proof of Theorem pwsnss
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 sssnr 3794 . . 3  |-  ( ( x  =  (/)  \/  x  =  { A } )  ->  x  C_  { A } )
21ss2abi 3265 . 2  |-  { x  |  ( x  =  (/)  \/  x  =  { A } ) }  C_  { x  |  x  C_  { A } }
3 dfpr2 3652 . 2  |-  { (/) ,  { A } }  =  { x  |  ( x  =  (/)  \/  x  =  { A } ) }
4 df-pw 3618 . 2  |-  ~P { A }  =  {
x  |  x  C_  { A } }
52, 3, 43sstr4i 3234 1  |-  { (/) ,  { A } }  C_ 
~P { A }
Colors of variables: wff set class
Syntax hints:    \/ wo 710    = wceq 1373   {cab 2191    C_ wss 3166   (/)c0 3460   ~Pcpw 3616   {csn 3633   {cpr 3634
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-ext 2187
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1484  df-sb 1786  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-v 2774  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3461  df-pw 3618  df-sn 3639  df-pr 3640
This theorem is referenced by:  pwpw0ss  3845
  Copyright terms: Public domain W3C validator