ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pwsnss Unicode version

Theorem pwsnss 3783
Description: The power set of a singleton. (Contributed by Jim Kingdon, 12-Aug-2018.)
Assertion
Ref Expression
pwsnss  |-  { (/) ,  { A } }  C_ 
~P { A }

Proof of Theorem pwsnss
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 sssnr 3733 . . 3  |-  ( ( x  =  (/)  \/  x  =  { A } )  ->  x  C_  { A } )
21ss2abi 3214 . 2  |-  { x  |  ( x  =  (/)  \/  x  =  { A } ) }  C_  { x  |  x  C_  { A } }
3 dfpr2 3595 . 2  |-  { (/) ,  { A } }  =  { x  |  ( x  =  (/)  \/  x  =  { A } ) }
4 df-pw 3561 . 2  |-  ~P { A }  =  {
x  |  x  C_  { A } }
52, 3, 43sstr4i 3183 1  |-  { (/) ,  { A } }  C_ 
~P { A }
Colors of variables: wff set class
Syntax hints:    \/ wo 698    = wceq 1343   {cab 2151    C_ wss 3116   (/)c0 3409   ~Pcpw 3559   {csn 3576   {cpr 3577
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-v 2728  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-nul 3410  df-pw 3561  df-sn 3582  df-pr 3583
This theorem is referenced by:  pwpw0ss  3784
  Copyright terms: Public domain W3C validator