ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pwsnss Unicode version

Theorem pwsnss 3790
Description: The power set of a singleton. (Contributed by Jim Kingdon, 12-Aug-2018.)
Assertion
Ref Expression
pwsnss  |-  { (/) ,  { A } }  C_ 
~P { A }

Proof of Theorem pwsnss
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 sssnr 3740 . . 3  |-  ( ( x  =  (/)  \/  x  =  { A } )  ->  x  C_  { A } )
21ss2abi 3219 . 2  |-  { x  |  ( x  =  (/)  \/  x  =  { A } ) }  C_  { x  |  x  C_  { A } }
3 dfpr2 3602 . 2  |-  { (/) ,  { A } }  =  { x  |  ( x  =  (/)  \/  x  =  { A } ) }
4 df-pw 3568 . 2  |-  ~P { A }  =  {
x  |  x  C_  { A } }
52, 3, 43sstr4i 3188 1  |-  { (/) ,  { A } }  C_ 
~P { A }
Colors of variables: wff set class
Syntax hints:    \/ wo 703    = wceq 1348   {cab 2156    C_ wss 3121   (/)c0 3414   ~Pcpw 3566   {csn 3583   {cpr 3584
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-ext 2152
This theorem depends on definitions:  df-bi 116  df-tru 1351  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-v 2732  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-pw 3568  df-sn 3589  df-pr 3590
This theorem is referenced by:  pwpw0ss  3791
  Copyright terms: Public domain W3C validator