Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > sssnm | Unicode version |
Description: The inhabited subset of a singleton. (Contributed by Jim Kingdon, 10-Aug-2018.) |
Ref | Expression |
---|---|
sssnm |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssel 3136 | . . . . . . . . . 10 | |
2 | elsni 3594 | . . . . . . . . . 10 | |
3 | 1, 2 | syl6 33 | . . . . . . . . 9 |
4 | eleq1 2229 | . . . . . . . . 9 | |
5 | 3, 4 | syl6 33 | . . . . . . . 8 |
6 | 5 | ibd 177 | . . . . . . 7 |
7 | 6 | exlimdv 1807 | . . . . . 6 |
8 | snssi 3717 | . . . . . 6 | |
9 | 7, 8 | syl6 33 | . . . . 5 |
10 | 9 | anc2li 327 | . . . 4 |
11 | eqss 3157 | . . . 4 | |
12 | 10, 11 | syl6ibr 161 | . . 3 |
13 | 12 | com12 30 | . 2 |
14 | eqimss 3196 | . 2 | |
15 | 13, 14 | impbid1 141 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 wceq 1343 wex 1480 wcel 2136 wss 3116 csn 3576 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-v 2728 df-in 3122 df-ss 3129 df-sn 3582 |
This theorem is referenced by: eqsnm 3735 ss1o0el1 4176 exmidn0m 4180 exmidsssn 4181 exmidomni 7106 exmidunben 12359 exmidsbthrlem 13901 sbthomlem 13904 |
Copyright terms: Public domain | W3C validator |