| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > sssnm | Unicode version | ||
| Description: The inhabited subset of a singleton. (Contributed by Jim Kingdon, 10-Aug-2018.) | 
| Ref | Expression | 
|---|---|
| sssnm | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | ssel 3177 | 
. . . . . . . . . 10
 | |
| 2 | elsni 3640 | 
. . . . . . . . . 10
 | |
| 3 | 1, 2 | syl6 33 | 
. . . . . . . . 9
 | 
| 4 | eleq1 2259 | 
. . . . . . . . 9
 | |
| 5 | 3, 4 | syl6 33 | 
. . . . . . . 8
 | 
| 6 | 5 | ibd 178 | 
. . . . . . 7
 | 
| 7 | 6 | exlimdv 1833 | 
. . . . . 6
 | 
| 8 | snssi 3766 | 
. . . . . 6
 | |
| 9 | 7, 8 | syl6 33 | 
. . . . 5
 | 
| 10 | 9 | anc2li 329 | 
. . . 4
 | 
| 11 | eqss 3198 | 
. . . 4
 | |
| 12 | 10, 11 | imbitrrdi 162 | 
. . 3
 | 
| 13 | 12 | com12 30 | 
. 2
 | 
| 14 | eqimss 3237 | 
. 2
 | |
| 15 | 13, 14 | impbid1 142 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 | 
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-v 2765 df-in 3163 df-ss 3170 df-sn 3628 | 
| This theorem is referenced by: eqsnm 3785 ss1o0el1 4230 exmidn0m 4234 exmidsssn 4235 exmidomni 7208 exmidunben 12643 exmidsbthrlem 15666 sbthomlem 15669 | 
| Copyright terms: Public domain | W3C validator |