ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sssnm Unicode version

Theorem sssnm 3676
Description: The inhabited subset of a singleton. (Contributed by Jim Kingdon, 10-Aug-2018.)
Assertion
Ref Expression
sssnm  |-  ( E. x  x  e.  A  ->  ( A  C_  { B } 
<->  A  =  { B } ) )
Distinct variable groups:    x, A    x, B

Proof of Theorem sssnm
StepHypRef Expression
1 ssel 3086 . . . . . . . . . 10  |-  ( A 
C_  { B }  ->  ( x  e.  A  ->  x  e.  { B } ) )
2 elsni 3540 . . . . . . . . . 10  |-  ( x  e.  { B }  ->  x  =  B )
31, 2syl6 33 . . . . . . . . 9  |-  ( A 
C_  { B }  ->  ( x  e.  A  ->  x  =  B ) )
4 eleq1 2200 . . . . . . . . 9  |-  ( x  =  B  ->  (
x  e.  A  <->  B  e.  A ) )
53, 4syl6 33 . . . . . . . 8  |-  ( A 
C_  { B }  ->  ( x  e.  A  ->  ( x  e.  A  <->  B  e.  A ) ) )
65ibd 177 . . . . . . 7  |-  ( A 
C_  { B }  ->  ( x  e.  A  ->  B  e.  A ) )
76exlimdv 1791 . . . . . 6  |-  ( A 
C_  { B }  ->  ( E. x  x  e.  A  ->  B  e.  A ) )
8 snssi 3659 . . . . . 6  |-  ( B  e.  A  ->  { B }  C_  A )
97, 8syl6 33 . . . . 5  |-  ( A 
C_  { B }  ->  ( E. x  x  e.  A  ->  { B }  C_  A ) )
109anc2li 327 . . . 4  |-  ( A 
C_  { B }  ->  ( E. x  x  e.  A  ->  ( A  C_  { B }  /\  { B }  C_  A ) ) )
11 eqss 3107 . . . 4  |-  ( A  =  { B }  <->  ( A  C_  { B }  /\  { B }  C_  A ) )
1210, 11syl6ibr 161 . . 3  |-  ( A 
C_  { B }  ->  ( E. x  x  e.  A  ->  A  =  { B } ) )
1312com12 30 . 2  |-  ( E. x  x  e.  A  ->  ( A  C_  { B }  ->  A  =  { B } ) )
14 eqimss 3146 . 2  |-  ( A  =  { B }  ->  A  C_  { B } )
1513, 14impbid1 141 1  |-  ( E. x  x  e.  A  ->  ( A  C_  { B } 
<->  A  =  { B } ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    = wceq 1331   E.wex 1468    e. wcel 1480    C_ wss 3066   {csn 3522
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2119
This theorem depends on definitions:  df-bi 116  df-tru 1334  df-nf 1437  df-sb 1736  df-clab 2124  df-cleq 2130  df-clel 2133  df-nfc 2268  df-v 2683  df-in 3072  df-ss 3079  df-sn 3528
This theorem is referenced by:  eqsnm  3677  exmid01  4116  exmidn0m  4119  exmidsssn  4120  exmidomni  7007  exmidunben  11928  exmidsbthrlem  13206  sbthomlem  13209
  Copyright terms: Public domain W3C validator