| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > sssnm | Unicode version | ||
| Description: The inhabited subset of a singleton. (Contributed by Jim Kingdon, 10-Aug-2018.) |
| Ref | Expression |
|---|---|
| sssnm |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssel 3187 |
. . . . . . . . . 10
| |
| 2 | elsni 3651 |
. . . . . . . . . 10
| |
| 3 | 1, 2 | syl6 33 |
. . . . . . . . 9
|
| 4 | eleq1 2268 |
. . . . . . . . 9
| |
| 5 | 3, 4 | syl6 33 |
. . . . . . . 8
|
| 6 | 5 | ibd 178 |
. . . . . . 7
|
| 7 | 6 | exlimdv 1842 |
. . . . . 6
|
| 8 | snssi 3777 |
. . . . . 6
| |
| 9 | 7, 8 | syl6 33 |
. . . . 5
|
| 10 | 9 | anc2li 329 |
. . . 4
|
| 11 | eqss 3208 |
. . . 4
| |
| 12 | 10, 11 | imbitrrdi 162 |
. . 3
|
| 13 | 12 | com12 30 |
. 2
|
| 14 | eqimss 3247 |
. 2
| |
| 15 | 13, 14 | impbid1 142 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-ext 2187 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-v 2774 df-in 3172 df-ss 3179 df-sn 3639 |
| This theorem is referenced by: eqsnm 3796 ss1o0el1 4241 exmidn0m 4245 exmidsssn 4246 exmidomni 7244 exmidunben 12797 exmidsbthrlem 15965 sbthomlem 15968 |
| Copyright terms: Public domain | W3C validator |