Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > sssnm | Unicode version |
Description: The inhabited subset of a singleton. (Contributed by Jim Kingdon, 10-Aug-2018.) |
Ref | Expression |
---|---|
sssnm |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssel 3141 | . . . . . . . . . 10 | |
2 | elsni 3601 | . . . . . . . . . 10 | |
3 | 1, 2 | syl6 33 | . . . . . . . . 9 |
4 | eleq1 2233 | . . . . . . . . 9 | |
5 | 3, 4 | syl6 33 | . . . . . . . 8 |
6 | 5 | ibd 177 | . . . . . . 7 |
7 | 6 | exlimdv 1812 | . . . . . 6 |
8 | snssi 3724 | . . . . . 6 | |
9 | 7, 8 | syl6 33 | . . . . 5 |
10 | 9 | anc2li 327 | . . . 4 |
11 | eqss 3162 | . . . 4 | |
12 | 10, 11 | syl6ibr 161 | . . 3 |
13 | 12 | com12 30 | . 2 |
14 | eqimss 3201 | . 2 | |
15 | 13, 14 | impbid1 141 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 wceq 1348 wex 1485 wcel 2141 wss 3121 csn 3583 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-tru 1351 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-v 2732 df-in 3127 df-ss 3134 df-sn 3589 |
This theorem is referenced by: eqsnm 3742 ss1o0el1 4183 exmidn0m 4187 exmidsssn 4188 exmidomni 7118 exmidunben 12381 exmidsbthrlem 14054 sbthomlem 14057 |
Copyright terms: Public domain | W3C validator |