ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sssnm Unicode version

Theorem sssnm 3734
Description: The inhabited subset of a singleton. (Contributed by Jim Kingdon, 10-Aug-2018.)
Assertion
Ref Expression
sssnm  |-  ( E. x  x  e.  A  ->  ( A  C_  { B } 
<->  A  =  { B } ) )
Distinct variable groups:    x, A    x, B

Proof of Theorem sssnm
StepHypRef Expression
1 ssel 3136 . . . . . . . . . 10  |-  ( A 
C_  { B }  ->  ( x  e.  A  ->  x  e.  { B } ) )
2 elsni 3594 . . . . . . . . . 10  |-  ( x  e.  { B }  ->  x  =  B )
31, 2syl6 33 . . . . . . . . 9  |-  ( A 
C_  { B }  ->  ( x  e.  A  ->  x  =  B ) )
4 eleq1 2229 . . . . . . . . 9  |-  ( x  =  B  ->  (
x  e.  A  <->  B  e.  A ) )
53, 4syl6 33 . . . . . . . 8  |-  ( A 
C_  { B }  ->  ( x  e.  A  ->  ( x  e.  A  <->  B  e.  A ) ) )
65ibd 177 . . . . . . 7  |-  ( A 
C_  { B }  ->  ( x  e.  A  ->  B  e.  A ) )
76exlimdv 1807 . . . . . 6  |-  ( A 
C_  { B }  ->  ( E. x  x  e.  A  ->  B  e.  A ) )
8 snssi 3717 . . . . . 6  |-  ( B  e.  A  ->  { B }  C_  A )
97, 8syl6 33 . . . . 5  |-  ( A 
C_  { B }  ->  ( E. x  x  e.  A  ->  { B }  C_  A ) )
109anc2li 327 . . . 4  |-  ( A 
C_  { B }  ->  ( E. x  x  e.  A  ->  ( A  C_  { B }  /\  { B }  C_  A ) ) )
11 eqss 3157 . . . 4  |-  ( A  =  { B }  <->  ( A  C_  { B }  /\  { B }  C_  A ) )
1210, 11syl6ibr 161 . . 3  |-  ( A 
C_  { B }  ->  ( E. x  x  e.  A  ->  A  =  { B } ) )
1312com12 30 . 2  |-  ( E. x  x  e.  A  ->  ( A  C_  { B }  ->  A  =  { B } ) )
14 eqimss 3196 . 2  |-  ( A  =  { B }  ->  A  C_  { B } )
1513, 14impbid1 141 1  |-  ( E. x  x  e.  A  ->  ( A  C_  { B } 
<->  A  =  { B } ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    = wceq 1343   E.wex 1480    e. wcel 2136    C_ wss 3116   {csn 3576
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-v 2728  df-in 3122  df-ss 3129  df-sn 3582
This theorem is referenced by:  eqsnm  3735  ss1o0el1  4176  exmidn0m  4180  exmidsssn  4181  exmidomni  7106  exmidunben  12359  exmidsbthrlem  13901  sbthomlem  13904
  Copyright terms: Public domain W3C validator