| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > sssnr | GIF version | ||
| Description: Empty set and the singleton itself are subsets of a singleton. Concerning the converse, see exmidsssn 4254. (Contributed by Jim Kingdon, 10-Aug-2018.) |
| Ref | Expression |
|---|---|
| sssnr | ⊢ ((𝐴 = ∅ ∨ 𝐴 = {𝐵}) → 𝐴 ⊆ {𝐵}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0ss 3503 | . . 3 ⊢ ∅ ⊆ {𝐵} | |
| 2 | sseq1 3220 | . . 3 ⊢ (𝐴 = ∅ → (𝐴 ⊆ {𝐵} ↔ ∅ ⊆ {𝐵})) | |
| 3 | 1, 2 | mpbiri 168 | . 2 ⊢ (𝐴 = ∅ → 𝐴 ⊆ {𝐵}) |
| 4 | eqimss 3251 | . 2 ⊢ (𝐴 = {𝐵} → 𝐴 ⊆ {𝐵}) | |
| 5 | 3, 4 | jaoi 718 | 1 ⊢ ((𝐴 = ∅ ∨ 𝐴 = {𝐵}) → 𝐴 ⊆ {𝐵}) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∨ wo 710 = wceq 1373 ⊆ wss 3170 ∅c0 3464 {csn 3638 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2188 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-v 2775 df-dif 3172 df-in 3176 df-ss 3183 df-nul 3465 |
| This theorem is referenced by: pwsnss 3850 |
| Copyright terms: Public domain | W3C validator |