ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sssnr GIF version

Theorem sssnr 3830
Description: Empty set and the singleton itself are subsets of a singleton. Concerning the converse, see exmidsssn 4285. (Contributed by Jim Kingdon, 10-Aug-2018.)
Assertion
Ref Expression
sssnr ((𝐴 = ∅ ∨ 𝐴 = {𝐵}) → 𝐴 ⊆ {𝐵})

Proof of Theorem sssnr
StepHypRef Expression
1 0ss 3530 . . 3 ∅ ⊆ {𝐵}
2 sseq1 3247 . . 3 (𝐴 = ∅ → (𝐴 ⊆ {𝐵} ↔ ∅ ⊆ {𝐵}))
31, 2mpbiri 168 . 2 (𝐴 = ∅ → 𝐴 ⊆ {𝐵})
4 eqimss 3278 . 2 (𝐴 = {𝐵} → 𝐴 ⊆ {𝐵})
53, 4jaoi 721 1 ((𝐴 = ∅ ∨ 𝐴 = {𝐵}) → 𝐴 ⊆ {𝐵})
Colors of variables: wff set class
Syntax hints:  wi 4  wo 713   = wceq 1395  wss 3197  c0 3491  {csn 3666
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-v 2801  df-dif 3199  df-in 3203  df-ss 3210  df-nul 3492
This theorem is referenced by:  pwsnss  3881
  Copyright terms: Public domain W3C validator