ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sssnr GIF version

Theorem sssnr 3783
Description: Empty set and the singleton itself are subsets of a singleton. Concerning the converse, see exmidsssn 4235. (Contributed by Jim Kingdon, 10-Aug-2018.)
Assertion
Ref Expression
sssnr ((𝐴 = ∅ ∨ 𝐴 = {𝐵}) → 𝐴 ⊆ {𝐵})

Proof of Theorem sssnr
StepHypRef Expression
1 0ss 3489 . . 3 ∅ ⊆ {𝐵}
2 sseq1 3206 . . 3 (𝐴 = ∅ → (𝐴 ⊆ {𝐵} ↔ ∅ ⊆ {𝐵}))
31, 2mpbiri 168 . 2 (𝐴 = ∅ → 𝐴 ⊆ {𝐵})
4 eqimss 3237 . 2 (𝐴 = {𝐵} → 𝐴 ⊆ {𝐵})
53, 4jaoi 717 1 ((𝐴 = ∅ ∨ 𝐴 = {𝐵}) → 𝐴 ⊆ {𝐵})
Colors of variables: wff set class
Syntax hints:  wi 4  wo 709   = wceq 1364  wss 3157  c0 3450  {csn 3622
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-v 2765  df-dif 3159  df-in 3163  df-ss 3170  df-nul 3451
This theorem is referenced by:  pwsnss  3833
  Copyright terms: Public domain W3C validator