![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > sssnr | GIF version |
Description: Empty set and the singleton itself are subsets of a singleton. Concerning the converse, see exmidsssn 4231. (Contributed by Jim Kingdon, 10-Aug-2018.) |
Ref | Expression |
---|---|
sssnr | ⊢ ((𝐴 = ∅ ∨ 𝐴 = {𝐵}) → 𝐴 ⊆ {𝐵}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0ss 3485 | . . 3 ⊢ ∅ ⊆ {𝐵} | |
2 | sseq1 3202 | . . 3 ⊢ (𝐴 = ∅ → (𝐴 ⊆ {𝐵} ↔ ∅ ⊆ {𝐵})) | |
3 | 1, 2 | mpbiri 168 | . 2 ⊢ (𝐴 = ∅ → 𝐴 ⊆ {𝐵}) |
4 | eqimss 3233 | . 2 ⊢ (𝐴 = {𝐵} → 𝐴 ⊆ {𝐵}) | |
5 | 3, 4 | jaoi 717 | 1 ⊢ ((𝐴 = ∅ ∨ 𝐴 = {𝐵}) → 𝐴 ⊆ {𝐵}) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∨ wo 709 = wceq 1364 ⊆ wss 3153 ∅c0 3446 {csn 3618 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-v 2762 df-dif 3155 df-in 3159 df-ss 3166 df-nul 3447 |
This theorem is referenced by: pwsnss 3829 |
Copyright terms: Public domain | W3C validator |