| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > sstr2 | Unicode version | ||
| Description: Transitivity of subclasses. Exercise 5 of [TakeutiZaring] p. 17. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Andrew Salmon, 14-Jun-2011.) |
| Ref | Expression |
|---|---|
| sstr2 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssel 3178 |
. . . 4
| |
| 2 | 1 | imim1d 75 |
. . 3
|
| 3 | 2 | alimdv 1893 |
. 2
|
| 4 | ssalel 3172 |
. 2
| |
| 5 | ssalel 3172 |
. 2
| |
| 6 | 3, 4, 5 | 3imtr4g 205 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-11 1520 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-in 3163 df-ss 3170 |
| This theorem is referenced by: sstr 3192 sstri 3193 sseq1 3207 sseq2 3208 ssun3 3329 ssun4 3330 ssinss1 3393 ssdisj 3508 triun 4145 trintssm 4148 sspwb 4250 exss 4261 relss 4751 funss 5278 funimass2 5337 fss 5422 fiintim 7001 sbthlem2 7033 sbthlemi3 7034 sbthlemi6 7037 lsslss 14013 lspss 14031 tgss 14383 tgcl 14384 tgss3 14398 clsss 14438 neiss 14470 ssnei2 14477 cnpnei 14539 cnptopco 14542 cnptoprest 14559 txcnp 14591 neibl 14811 metcnp3 14831 bj-nntrans 15681 |
| Copyright terms: Public domain | W3C validator |