| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > sstr2 | Unicode version | ||
| Description: Transitivity of subclasses. Exercise 5 of [TakeutiZaring] p. 17. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Andrew Salmon, 14-Jun-2011.) |
| Ref | Expression |
|---|---|
| sstr2 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssel 3187 |
. . . 4
| |
| 2 | 1 | imim1d 75 |
. . 3
|
| 3 | 2 | alimdv 1902 |
. 2
|
| 4 | ssalel 3181 |
. 2
| |
| 5 | ssalel 3181 |
. 2
| |
| 6 | 3, 4, 5 | 3imtr4g 205 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-11 1529 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-ext 2187 |
| This theorem depends on definitions: df-bi 117 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-in 3172 df-ss 3179 |
| This theorem is referenced by: sstr 3201 sstri 3202 sseq1 3216 sseq2 3217 ssun3 3338 ssun4 3339 ssinss1 3402 ssdisj 3517 triun 4155 trintssm 4158 sspwb 4260 exss 4271 relss 4762 funss 5290 funimass2 5352 fss 5437 fiintim 7028 sbthlem2 7060 sbthlemi3 7061 sbthlemi6 7064 lsslss 14143 lspss 14161 tgss 14535 tgcl 14536 tgss3 14550 clsss 14590 neiss 14622 ssnei2 14629 cnpnei 14691 cnptopco 14694 cnptoprest 14711 txcnp 14743 neibl 14963 metcnp3 14983 bj-nntrans 15887 |
| Copyright terms: Public domain | W3C validator |