| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > sstr2 | Unicode version | ||
| Description: Transitivity of subclasses. Exercise 5 of [TakeutiZaring] p. 17. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Andrew Salmon, 14-Jun-2011.) |
| Ref | Expression |
|---|---|
| sstr2 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssel 3195 |
. . . 4
| |
| 2 | 1 | imim1d 75 |
. . 3
|
| 3 | 2 | alimdv 1903 |
. 2
|
| 4 | ssalel 3189 |
. 2
| |
| 5 | ssalel 3189 |
. 2
| |
| 6 | 3, 4, 5 | 3imtr4g 205 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-11 1530 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2189 |
| This theorem depends on definitions: df-bi 117 df-nf 1485 df-sb 1787 df-clab 2194 df-cleq 2200 df-clel 2203 df-in 3180 df-ss 3187 |
| This theorem is referenced by: sstr 3209 sstri 3210 sseq1 3224 sseq2 3225 ssun3 3346 ssun4 3347 ssinss1 3410 ssdisj 3525 triun 4171 trintssm 4174 sspwb 4278 exss 4289 relss 4780 funss 5309 funimass2 5371 fss 5457 fiintim 7054 sbthlem2 7086 sbthlemi3 7087 sbthlemi6 7090 lsslss 14258 lspss 14276 tgss 14650 tgcl 14651 tgss3 14665 clsss 14705 neiss 14737 ssnei2 14744 cnpnei 14806 cnptopco 14809 cnptoprest 14826 txcnp 14858 neibl 15078 metcnp3 15098 bj-nntrans 16086 |
| Copyright terms: Public domain | W3C validator |