| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > sstr2 | Unicode version | ||
| Description: Transitivity of subclasses. Exercise 5 of [TakeutiZaring] p. 17. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Andrew Salmon, 14-Jun-2011.) |
| Ref | Expression |
|---|---|
| sstr2 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssel 3218 |
. . . 4
| |
| 2 | 1 | imim1d 75 |
. . 3
|
| 3 | 2 | alimdv 1925 |
. 2
|
| 4 | ssalel 3212 |
. 2
| |
| 5 | ssalel 3212 |
. 2
| |
| 6 | 3, 4, 5 | 3imtr4g 205 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-11 1552 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-in 3203 df-ss 3210 |
| This theorem is referenced by: sstr 3232 sstri 3233 sseq1 3247 sseq2 3248 ssun3 3369 ssun4 3370 ssinss1 3433 ssdisj 3548 triun 4194 trintssm 4197 sspwb 4301 exss 4312 relss 4805 funss 5336 funimass2 5398 fss 5484 fiintim 7089 sbthlem2 7121 sbthlemi3 7122 sbthlemi6 7125 lsslss 14339 lspss 14357 tgss 14731 tgcl 14732 tgss3 14746 clsss 14786 neiss 14818 ssnei2 14825 cnpnei 14887 cnptopco 14890 cnptoprest 14907 txcnp 14939 neibl 15159 metcnp3 15179 bj-nntrans 16272 |
| Copyright terms: Public domain | W3C validator |