Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > sstr2 | Unicode version |
Description: Transitivity of subclasses. Exercise 5 of [TakeutiZaring] p. 17. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Andrew Salmon, 14-Jun-2011.) |
Ref | Expression |
---|---|
sstr2 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssel 3136 | . . . 4 | |
2 | 1 | imim1d 75 | . . 3 |
3 | 2 | alimdv 1867 | . 2 |
4 | dfss2 3131 | . 2 | |
5 | dfss2 3131 | . 2 | |
6 | 3, 4, 5 | 3imtr4g 204 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wal 1341 wcel 2136 wss 3116 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-11 1494 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-in 3122 df-ss 3129 |
This theorem is referenced by: sstr 3150 sstri 3151 sseq1 3165 sseq2 3166 ssun3 3287 ssun4 3288 ssinss1 3351 ssdisj 3465 triun 4093 trintssm 4096 sspwb 4194 exss 4205 relss 4691 funss 5207 funimass2 5266 fss 5349 fiintim 6894 sbthlem2 6923 sbthlemi3 6924 sbthlemi6 6927 tgss 12703 tgcl 12704 tgss3 12718 clsss 12758 neiss 12790 ssnei2 12797 cnpnei 12859 cnptopco 12862 cnptoprest 12879 txcnp 12911 neibl 13131 metcnp3 13151 bj-nntrans 13833 |
Copyright terms: Public domain | W3C validator |