| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > sstr2 | Unicode version | ||
| Description: Transitivity of subclasses. Exercise 5 of [TakeutiZaring] p. 17. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Andrew Salmon, 14-Jun-2011.) |
| Ref | Expression |
|---|---|
| sstr2 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssel 3186 |
. . . 4
| |
| 2 | 1 | imim1d 75 |
. . 3
|
| 3 | 2 | alimdv 1901 |
. 2
|
| 4 | ssalel 3180 |
. 2
| |
| 5 | ssalel 3180 |
. 2
| |
| 6 | 3, 4, 5 | 3imtr4g 205 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-11 1528 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-ext 2186 |
| This theorem depends on definitions: df-bi 117 df-nf 1483 df-sb 1785 df-clab 2191 df-cleq 2197 df-clel 2200 df-in 3171 df-ss 3178 |
| This theorem is referenced by: sstr 3200 sstri 3201 sseq1 3215 sseq2 3216 ssun3 3337 ssun4 3338 ssinss1 3401 ssdisj 3516 triun 4154 trintssm 4157 sspwb 4259 exss 4270 relss 4761 funss 5289 funimass2 5351 fss 5436 fiintim 7027 sbthlem2 7059 sbthlemi3 7060 sbthlemi6 7063 lsslss 14114 lspss 14132 tgss 14506 tgcl 14507 tgss3 14521 clsss 14561 neiss 14593 ssnei2 14600 cnpnei 14662 cnptopco 14665 cnptoprest 14682 txcnp 14714 neibl 14934 metcnp3 14954 bj-nntrans 15849 |
| Copyright terms: Public domain | W3C validator |