ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elun1 Unicode version

Theorem elun1 3340
Description: Membership law for union of classes. (Contributed by NM, 5-Aug-1993.)
Assertion
Ref Expression
elun1  |-  ( A  e.  B  ->  A  e.  ( B  u.  C
) )

Proof of Theorem elun1
StepHypRef Expression
1 ssun1 3336 . 2  |-  B  C_  ( B  u.  C
)
21sseli 3189 1  |-  ( A  e.  B  ->  A  e.  ( B  u.  C
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    e. wcel 2176    u. cun 3164
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-ext 2187
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1484  df-sb 1786  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-v 2774  df-un 3170  df-in 3172  df-ss 3179
This theorem is referenced by:  dcun  3570  exmidundif  4251  exmidundifim  4252  brtposg  6342  dftpos4  6351  dcdifsnid  6592  undifdcss  7022  fidcenumlemrks  7057  djulclr  7153  djulcl  7155  djuss  7174  finomni  7244  hashennnuni  10926  sumsplitdc  11776  srngbased  13012  srngplusgd  13013  srngmulrd  13014  lmodbased  13030  lmodplusgd  13031  lmodscad  13032  ipsbased  13042  ipsaddgd  13043  ipsmulrd  13044  psrbasg  14469  elplyd  15246  ply1term  15248
  Copyright terms: Public domain W3C validator