Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > elun1 | Unicode version |
Description: Membership law for union of classes. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
elun1 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssun1 3270 | . 2 | |
2 | 1 | sseli 3124 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wcel 2128 cun 3100 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1427 ax-7 1428 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-8 1484 ax-10 1485 ax-11 1486 ax-i12 1487 ax-bndl 1489 ax-4 1490 ax-17 1506 ax-i9 1510 ax-ial 1514 ax-i5r 1515 ax-ext 2139 |
This theorem depends on definitions: df-bi 116 df-tru 1338 df-nf 1441 df-sb 1743 df-clab 2144 df-cleq 2150 df-clel 2153 df-nfc 2288 df-v 2714 df-un 3106 df-in 3108 df-ss 3115 |
This theorem is referenced by: dcun 3504 exmidundif 4168 exmidundifim 4169 brtposg 6202 dftpos4 6211 dcdifsnid 6452 undifdcss 6868 fidcenumlemrks 6898 djulclr 6994 djulcl 6996 djuss 7015 finomni 7084 hashennnuni 10657 sumsplitdc 11333 srngbased 12355 srngplusgd 12356 srngmulrd 12357 lmodbased 12366 lmodplusgd 12367 lmodscad 12368 ipsbased 12374 ipsaddgd 12375 ipsmulrd 12376 |
Copyright terms: Public domain | W3C validator |