ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elun1 Unicode version

Theorem elun1 3326
Description: Membership law for union of classes. (Contributed by NM, 5-Aug-1993.)
Assertion
Ref Expression
elun1  |-  ( A  e.  B  ->  A  e.  ( B  u.  C
) )

Proof of Theorem elun1
StepHypRef Expression
1 ssun1 3322 . 2  |-  B  C_  ( B  u.  C
)
21sseli 3175 1  |-  ( A  e.  B  ->  A  e.  ( B  u.  C
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    e. wcel 2164    u. cun 3151
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-v 2762  df-un 3157  df-in 3159  df-ss 3166
This theorem is referenced by:  dcun  3556  exmidundif  4235  exmidundifim  4236  brtposg  6307  dftpos4  6316  dcdifsnid  6557  undifdcss  6979  fidcenumlemrks  7012  djulclr  7108  djulcl  7110  djuss  7129  finomni  7199  hashennnuni  10850  sumsplitdc  11575  srngbased  12764  srngplusgd  12765  srngmulrd  12766  lmodbased  12782  lmodplusgd  12783  lmodscad  12784  ipsbased  12794  ipsaddgd  12795  ipsmulrd  12796  psrbasg  14159  elplyd  14887  ply1term  14889
  Copyright terms: Public domain W3C validator