| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > elun1 | Unicode version | ||
| Description: Membership law for union of classes. (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| elun1 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssun1 3367 |
. 2
| |
| 2 | 1 | sseli 3220 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-v 2801 df-un 3201 df-in 3203 df-ss 3210 |
| This theorem is referenced by: dcun 3601 exmidundif 4290 exmidundifim 4291 brtposg 6400 dftpos4 6409 dcdifsnid 6650 undifdcss 7085 fidcenumlemrks 7120 djulclr 7216 djulcl 7218 djuss 7237 finomni 7307 hashennnuni 11001 sumsplitdc 11943 bassetsnn 13089 srngbased 13180 srngplusgd 13181 srngmulrd 13182 lmodbased 13198 lmodplusgd 13199 lmodscad 13200 ipsbased 13210 ipsaddgd 13211 ipsmulrd 13212 psrbasg 14638 elplyd 15415 ply1term 15417 |
| Copyright terms: Public domain | W3C validator |