ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elun1 Unicode version

Theorem elun1 3289
Description: Membership law for union of classes. (Contributed by NM, 5-Aug-1993.)
Assertion
Ref Expression
elun1  |-  ( A  e.  B  ->  A  e.  ( B  u.  C
) )

Proof of Theorem elun1
StepHypRef Expression
1 ssun1 3285 . 2  |-  B  C_  ( B  u.  C
)
21sseli 3138 1  |-  ( A  e.  B  ->  A  e.  ( B  u.  C
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    e. wcel 2136    u. cun 3114
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-v 2728  df-un 3120  df-in 3122  df-ss 3129
This theorem is referenced by:  dcun  3519  exmidundif  4185  exmidundifim  4186  brtposg  6222  dftpos4  6231  dcdifsnid  6472  undifdcss  6888  fidcenumlemrks  6918  djulclr  7014  djulcl  7016  djuss  7035  finomni  7104  hashennnuni  10692  sumsplitdc  11373  srngbased  12518  srngplusgd  12519  srngmulrd  12520  lmodbased  12529  lmodplusgd  12530  lmodscad  12531  ipsbased  12537  ipsaddgd  12538  ipsmulrd  12539
  Copyright terms: Public domain W3C validator