ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elun1 Unicode version

Theorem elun1 3371
Description: Membership law for union of classes. (Contributed by NM, 5-Aug-1993.)
Assertion
Ref Expression
elun1  |-  ( A  e.  B  ->  A  e.  ( B  u.  C
) )

Proof of Theorem elun1
StepHypRef Expression
1 ssun1 3367 . 2  |-  B  C_  ( B  u.  C
)
21sseli 3220 1  |-  ( A  e.  B  ->  A  e.  ( B  u.  C
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    e. wcel 2200    u. cun 3195
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-v 2801  df-un 3201  df-in 3203  df-ss 3210
This theorem is referenced by:  dcun  3601  exmidundif  4290  exmidundifim  4291  brtposg  6400  dftpos4  6409  dcdifsnid  6650  undifdcss  7085  fidcenumlemrks  7120  djulclr  7216  djulcl  7218  djuss  7237  finomni  7307  hashennnuni  11001  sumsplitdc  11943  bassetsnn  13089  srngbased  13180  srngplusgd  13181  srngmulrd  13182  lmodbased  13198  lmodplusgd  13199  lmodscad  13200  ipsbased  13210  ipsaddgd  13211  ipsmulrd  13212  psrbasg  14638  elplyd  15415  ply1term  15417
  Copyright terms: Public domain W3C validator