ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elun1 Unicode version

Theorem elun1 3331
Description: Membership law for union of classes. (Contributed by NM, 5-Aug-1993.)
Assertion
Ref Expression
elun1  |-  ( A  e.  B  ->  A  e.  ( B  u.  C
) )

Proof of Theorem elun1
StepHypRef Expression
1 ssun1 3327 . 2  |-  B  C_  ( B  u.  C
)
21sseli 3180 1  |-  ( A  e.  B  ->  A  e.  ( B  u.  C
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    e. wcel 2167    u. cun 3155
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-v 2765  df-un 3161  df-in 3163  df-ss 3170
This theorem is referenced by:  dcun  3561  exmidundif  4240  exmidundifim  4241  brtposg  6321  dftpos4  6330  dcdifsnid  6571  undifdcss  6993  fidcenumlemrks  7028  djulclr  7124  djulcl  7126  djuss  7145  finomni  7215  hashennnuni  10888  sumsplitdc  11614  srngbased  12849  srngplusgd  12850  srngmulrd  12851  lmodbased  12867  lmodplusgd  12868  lmodscad  12869  ipsbased  12879  ipsaddgd  12880  ipsmulrd  12881  psrbasg  14303  elplyd  15061  ply1term  15063
  Copyright terms: Public domain W3C validator