| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > elun1 | Unicode version | ||
| Description: Membership law for union of classes. (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| elun1 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssun1 3326 |
. 2
| |
| 2 | 1 | sseli 3179 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-v 2765 df-un 3161 df-in 3163 df-ss 3170 |
| This theorem is referenced by: dcun 3560 exmidundif 4239 exmidundifim 4240 brtposg 6312 dftpos4 6321 dcdifsnid 6562 undifdcss 6984 fidcenumlemrks 7019 djulclr 7115 djulcl 7117 djuss 7136 finomni 7206 hashennnuni 10871 sumsplitdc 11597 srngbased 12824 srngplusgd 12825 srngmulrd 12826 lmodbased 12842 lmodplusgd 12843 lmodscad 12844 ipsbased 12854 ipsaddgd 12855 ipsmulrd 12856 psrbasg 14227 elplyd 14977 ply1term 14979 |
| Copyright terms: Public domain | W3C validator |