| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > elun1 | Unicode version | ||
| Description: Membership law for union of classes. (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| elun1 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssun1 3336 |
. 2
| |
| 2 | 1 | sseli 3189 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-ext 2187 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-v 2774 df-un 3170 df-in 3172 df-ss 3179 |
| This theorem is referenced by: dcun 3570 exmidundif 4251 exmidundifim 4252 brtposg 6342 dftpos4 6351 dcdifsnid 6592 undifdcss 7022 fidcenumlemrks 7057 djulclr 7153 djulcl 7155 djuss 7174 finomni 7244 hashennnuni 10926 sumsplitdc 11776 srngbased 13012 srngplusgd 13013 srngmulrd 13014 lmodbased 13030 lmodplusgd 13031 lmodscad 13032 ipsbased 13042 ipsaddgd 13043 ipsmulrd 13044 psrbasg 14469 elplyd 15246 ply1term 15248 |
| Copyright terms: Public domain | W3C validator |