ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elun1 Unicode version

Theorem elun1 3327
Description: Membership law for union of classes. (Contributed by NM, 5-Aug-1993.)
Assertion
Ref Expression
elun1  |-  ( A  e.  B  ->  A  e.  ( B  u.  C
) )

Proof of Theorem elun1
StepHypRef Expression
1 ssun1 3323 . 2  |-  B  C_  ( B  u.  C
)
21sseli 3176 1  |-  ( A  e.  B  ->  A  e.  ( B  u.  C
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    e. wcel 2164    u. cun 3152
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-v 2762  df-un 3158  df-in 3160  df-ss 3167
This theorem is referenced by:  dcun  3557  exmidundif  4236  exmidundifim  4237  brtposg  6309  dftpos4  6318  dcdifsnid  6559  undifdcss  6981  fidcenumlemrks  7014  djulclr  7110  djulcl  7112  djuss  7131  finomni  7201  hashennnuni  10853  sumsplitdc  11578  srngbased  12767  srngplusgd  12768  srngmulrd  12769  lmodbased  12785  lmodplusgd  12786  lmodscad  12787  ipsbased  12797  ipsaddgd  12798  ipsmulrd  12799  psrbasg  14170  elplyd  14920  ply1term  14922
  Copyright terms: Public domain W3C validator