ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xpsspw Unicode version

Theorem xpsspw 4609
Description: A cross product is included in the power of the power of the union of its arguments. (Contributed by NM, 13-Sep-2006.)
Assertion
Ref Expression
xpsspw  |-  ( A  X.  B )  C_  ~P ~P ( A  u.  B )

Proof of Theorem xpsspw
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elxpi 4513 . . . 4  |-  ( z  e.  ( A  X.  B )  ->  E. x E. y ( z  = 
<. x ,  y >.  /\  ( x  e.  A  /\  y  e.  B
) ) )
2 vex 2658 . . . . . . . 8  |-  x  e. 
_V
3 vex 2658 . . . . . . . 8  |-  y  e. 
_V
42, 3dfop 3668 . . . . . . 7  |-  <. x ,  y >.  =  { { x } ,  { x ,  y } }
5 snssi 3628 . . . . . . . . . . . . 13  |-  ( x  e.  A  ->  { x }  C_  A )
6 ssun3 3205 . . . . . . . . . . . . 13  |-  ( { x }  C_  A  ->  { x }  C_  ( A  u.  B
) )
75, 6syl 14 . . . . . . . . . . . 12  |-  ( x  e.  A  ->  { x }  C_  ( A  u.  B ) )
87adantr 272 . . . . . . . . . . 11  |-  ( ( x  e.  A  /\  y  e.  B )  ->  { x }  C_  ( A  u.  B
) )
9 sseq1 3084 . . . . . . . . . . 11  |-  ( z  =  { x }  ->  ( z  C_  ( A  u.  B )  <->  { x }  C_  ( A  u.  B )
) )
108, 9syl5ibrcom 156 . . . . . . . . . 10  |-  ( ( x  e.  A  /\  y  e.  B )  ->  ( z  =  {
x }  ->  z  C_  ( A  u.  B
) ) )
11 df-pr 3498 . . . . . . . . . . . 12  |-  { x ,  y }  =  ( { x }  u.  { y } )
12 snssi 3628 . . . . . . . . . . . . . . 15  |-  ( y  e.  B  ->  { y }  C_  B )
13 ssun4 3206 . . . . . . . . . . . . . . 15  |-  ( { y }  C_  B  ->  { y }  C_  ( A  u.  B
) )
1412, 13syl 14 . . . . . . . . . . . . . 14  |-  ( y  e.  B  ->  { y }  C_  ( A  u.  B ) )
157, 14anim12i 334 . . . . . . . . . . . . 13  |-  ( ( x  e.  A  /\  y  e.  B )  ->  ( { x }  C_  ( A  u.  B
)  /\  { y }  C_  ( A  u.  B ) ) )
16 unss 3214 . . . . . . . . . . . . 13  |-  ( ( { x }  C_  ( A  u.  B
)  /\  { y }  C_  ( A  u.  B ) )  <->  ( {
x }  u.  {
y } )  C_  ( A  u.  B
) )
1715, 16sylib 121 . . . . . . . . . . . 12  |-  ( ( x  e.  A  /\  y  e.  B )  ->  ( { x }  u.  { y } ) 
C_  ( A  u.  B ) )
1811, 17syl5eqss 3107 . . . . . . . . . . 11  |-  ( ( x  e.  A  /\  y  e.  B )  ->  { x ,  y }  C_  ( A  u.  B ) )
19 sseq1 3084 . . . . . . . . . . 11  |-  ( z  =  { x ,  y }  ->  (
z  C_  ( A  u.  B )  <->  { x ,  y }  C_  ( A  u.  B
) ) )
2018, 19syl5ibrcom 156 . . . . . . . . . 10  |-  ( ( x  e.  A  /\  y  e.  B )  ->  ( z  =  {
x ,  y }  ->  z  C_  ( A  u.  B )
) )
2110, 20jaod 689 . . . . . . . . 9  |-  ( ( x  e.  A  /\  y  e.  B )  ->  ( ( z  =  { x }  \/  z  =  { x ,  y } )  ->  z  C_  ( A  u.  B )
) )
22 vex 2658 . . . . . . . . . 10  |-  z  e. 
_V
2322elpr 3512 . . . . . . . . 9  |-  ( z  e.  { { x } ,  { x ,  y } }  <->  ( z  =  { x }  \/  z  =  { x ,  y } ) )
2422elpw 3480 . . . . . . . . 9  |-  ( z  e.  ~P ( A  u.  B )  <->  z  C_  ( A  u.  B
) )
2521, 23, 243imtr4g 204 . . . . . . . 8  |-  ( ( x  e.  A  /\  y  e.  B )  ->  ( z  e.  { { x } ,  { x ,  y } }  ->  z  e.  ~P ( A  u.  B ) ) )
2625ssrdv 3067 . . . . . . 7  |-  ( ( x  e.  A  /\  y  e.  B )  ->  { { x } ,  { x ,  y } }  C_  ~P ( A  u.  B
) )
274, 26syl5eqss 3107 . . . . . 6  |-  ( ( x  e.  A  /\  y  e.  B )  -> 
<. x ,  y >.  C_ 
~P ( A  u.  B ) )
28 sseq1 3084 . . . . . . 7  |-  ( z  =  <. x ,  y
>.  ->  ( z  C_  ~P ( A  u.  B
)  <->  <. x ,  y
>.  C_  ~P ( A  u.  B ) ) )
2928biimpar 293 . . . . . 6  |-  ( ( z  =  <. x ,  y >.  /\  <. x ,  y >.  C_  ~P ( A  u.  B
) )  ->  z  C_ 
~P ( A  u.  B ) )
3027, 29sylan2 282 . . . . 5  |-  ( ( z  =  <. x ,  y >.  /\  (
x  e.  A  /\  y  e.  B )
)  ->  z  C_  ~P ( A  u.  B
) )
3130exlimivv 1848 . . . 4  |-  ( E. x E. y ( z  =  <. x ,  y >.  /\  (
x  e.  A  /\  y  e.  B )
)  ->  z  C_  ~P ( A  u.  B
) )
321, 31syl 14 . . 3  |-  ( z  e.  ( A  X.  B )  ->  z  C_ 
~P ( A  u.  B ) )
3322elpw 3480 . . 3  |-  ( z  e.  ~P ~P ( A  u.  B )  <->  z 
C_  ~P ( A  u.  B ) )
3432, 33sylibr 133 . 2  |-  ( z  e.  ( A  X.  B )  ->  z  e.  ~P ~P ( A  u.  B ) )
3534ssriv 3065 1  |-  ( A  X.  B )  C_  ~P ~P ( A  u.  B )
Colors of variables: wff set class
Syntax hints:    /\ wa 103    \/ wo 680    = wceq 1312   E.wex 1449    e. wcel 1461    u. cun 3033    C_ wss 3035   ~Pcpw 3474   {csn 3491   {cpr 3492   <.cop 3494    X. cxp 4495
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 681  ax-5 1404  ax-7 1405  ax-gen 1406  ax-ie1 1450  ax-ie2 1451  ax-8 1463  ax-10 1464  ax-11 1465  ax-i12 1466  ax-bndl 1467  ax-4 1468  ax-17 1487  ax-i9 1491  ax-ial 1495  ax-i5r 1496  ax-ext 2095
This theorem depends on definitions:  df-bi 116  df-3an 945  df-tru 1315  df-nf 1418  df-sb 1717  df-clab 2100  df-cleq 2106  df-clel 2109  df-nfc 2242  df-v 2657  df-un 3039  df-in 3041  df-ss 3048  df-pw 3476  df-sn 3497  df-pr 3498  df-op 3500  df-opab 3948  df-xp 4503
This theorem is referenced by:  unixpss  4610  xpexg  4611
  Copyright terms: Public domain W3C validator