ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ssun4 GIF version

Theorem ssun4 3338
Description: Subclass law for union of classes. (Contributed by NM, 14-Aug-1994.)
Assertion
Ref Expression
ssun4 (𝐴𝐵𝐴 ⊆ (𝐶𝐵))

Proof of Theorem ssun4
StepHypRef Expression
1 ssun2 3336 . 2 𝐵 ⊆ (𝐶𝐵)
2 sstr2 3199 . 2 (𝐴𝐵 → (𝐵 ⊆ (𝐶𝐵) → 𝐴 ⊆ (𝐶𝐵)))
31, 2mpi 15 1 (𝐴𝐵𝐴 ⊆ (𝐶𝐵))
Colors of variables: wff set class
Syntax hints:  wi 4  cun 3163  wss 3165
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-ext 2186
This theorem depends on definitions:  df-bi 117  df-tru 1375  df-nf 1483  df-sb 1785  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-v 2773  df-un 3169  df-in 3171  df-ss 3178
This theorem is referenced by:  ssun  3351  xpsspw  4785
  Copyright terms: Public domain W3C validator