ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  smoiun Unicode version

Theorem smoiun 6356
Description: The value of a strictly monotone ordinal function contains its indexed union. (Contributed by Andrew Salmon, 22-Nov-2011.)
Assertion
Ref Expression
smoiun  |-  ( ( Smo  B  /\  A  e.  dom  B )  ->  U_ x  e.  A  ( B `  x ) 
C_  ( B `  A ) )
Distinct variable groups:    x, A    x, B

Proof of Theorem smoiun
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 eliun 3917 . . 3  |-  ( y  e.  U_ x  e.  A  ( B `  x )  <->  E. x  e.  A  y  e.  ( B `  x ) )
2 smofvon 6354 . . . . 5  |-  ( ( Smo  B  /\  A  e.  dom  B )  -> 
( B `  A
)  e.  On )
3 smoel 6355 . . . . . 6  |-  ( ( Smo  B  /\  A  e.  dom  B  /\  x  e.  A )  ->  ( B `  x )  e.  ( B `  A
) )
433expia 1207 . . . . 5  |-  ( ( Smo  B  /\  A  e.  dom  B )  -> 
( x  e.  A  ->  ( B `  x
)  e.  ( B `
 A ) ) )
5 ontr1 4421 . . . . . 6  |-  ( ( B `  A )  e.  On  ->  (
( y  e.  ( B `  x )  /\  ( B `  x )  e.  ( B `  A ) )  ->  y  e.  ( B `  A ) ) )
65expcomd 1452 . . . . 5  |-  ( ( B `  A )  e.  On  ->  (
( B `  x
)  e.  ( B `
 A )  -> 
( y  e.  ( B `  x )  ->  y  e.  ( B `  A ) ) ) )
72, 4, 6sylsyld 58 . . . 4  |-  ( ( Smo  B  /\  A  e.  dom  B )  -> 
( x  e.  A  ->  ( y  e.  ( B `  x )  ->  y  e.  ( B `  A ) ) ) )
87rexlimdv 2610 . . 3  |-  ( ( Smo  B  /\  A  e.  dom  B )  -> 
( E. x  e.  A  y  e.  ( B `  x )  ->  y  e.  ( B `  A ) ) )
91, 8biimtrid 152 . 2  |-  ( ( Smo  B  /\  A  e.  dom  B )  -> 
( y  e.  U_ x  e.  A  ( B `  x )  ->  y  e.  ( B `
 A ) ) )
109ssrdv 3186 1  |-  ( ( Smo  B  /\  A  e.  dom  B )  ->  U_ x  e.  A  ( B `  x ) 
C_  ( B `  A ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    e. wcel 2164   E.wrex 2473    C_ wss 3154   U_ciun 3913   Oncon0 4395   dom cdm 4660   ` cfv 5255   Smo wsmo 6340
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-14 2167  ax-ext 2175  ax-sep 4148  ax-pow 4204  ax-pr 4239
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-v 2762  df-sbc 2987  df-un 3158  df-in 3160  df-ss 3167  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-iun 3915  df-br 4031  df-opab 4092  df-tr 4129  df-id 4325  df-iord 4398  df-on 4400  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-rn 4671  df-iota 5216  df-fun 5257  df-fn 5258  df-f 5259  df-fv 5263  df-smo 6341
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator