ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  smoiun Unicode version

Theorem smoiun 6206
Description: The value of a strictly monotone ordinal function contains its indexed union. (Contributed by Andrew Salmon, 22-Nov-2011.)
Assertion
Ref Expression
smoiun  |-  ( ( Smo  B  /\  A  e.  dom  B )  ->  U_ x  e.  A  ( B `  x ) 
C_  ( B `  A ) )
Distinct variable groups:    x, A    x, B

Proof of Theorem smoiun
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 eliun 3825 . . 3  |-  ( y  e.  U_ x  e.  A  ( B `  x )  <->  E. x  e.  A  y  e.  ( B `  x ) )
2 smofvon 6204 . . . . 5  |-  ( ( Smo  B  /\  A  e.  dom  B )  -> 
( B `  A
)  e.  On )
3 smoel 6205 . . . . . 6  |-  ( ( Smo  B  /\  A  e.  dom  B  /\  x  e.  A )  ->  ( B `  x )  e.  ( B `  A
) )
433expia 1184 . . . . 5  |-  ( ( Smo  B  /\  A  e.  dom  B )  -> 
( x  e.  A  ->  ( B `  x
)  e.  ( B `
 A ) ) )
5 ontr1 4319 . . . . . 6  |-  ( ( B `  A )  e.  On  ->  (
( y  e.  ( B `  x )  /\  ( B `  x )  e.  ( B `  A ) )  ->  y  e.  ( B `  A ) ) )
65expcomd 1418 . . . . 5  |-  ( ( B `  A )  e.  On  ->  (
( B `  x
)  e.  ( B `
 A )  -> 
( y  e.  ( B `  x )  ->  y  e.  ( B `  A ) ) ) )
72, 4, 6sylsyld 58 . . . 4  |-  ( ( Smo  B  /\  A  e.  dom  B )  -> 
( x  e.  A  ->  ( y  e.  ( B `  x )  ->  y  e.  ( B `  A ) ) ) )
87rexlimdv 2551 . . 3  |-  ( ( Smo  B  /\  A  e.  dom  B )  -> 
( E. x  e.  A  y  e.  ( B `  x )  ->  y  e.  ( B `  A ) ) )
91, 8syl5bi 151 . 2  |-  ( ( Smo  B  /\  A  e.  dom  B )  -> 
( y  e.  U_ x  e.  A  ( B `  x )  ->  y  e.  ( B `
 A ) ) )
109ssrdv 3108 1  |-  ( ( Smo  B  /\  A  e.  dom  B )  ->  U_ x  e.  A  ( B `  x ) 
C_  ( B `  A ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    e. wcel 1481   E.wrex 2418    C_ wss 3076   U_ciun 3821   Oncon0 4293   dom cdm 4547   ` cfv 5131   Smo wsmo 6190
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-sep 4054  ax-pow 4106  ax-pr 4139
This theorem depends on definitions:  df-bi 116  df-3an 965  df-tru 1335  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ral 2422  df-rex 2423  df-v 2691  df-sbc 2914  df-un 3080  df-in 3082  df-ss 3089  df-pw 3517  df-sn 3538  df-pr 3539  df-op 3541  df-uni 3745  df-iun 3823  df-br 3938  df-opab 3998  df-tr 4035  df-id 4223  df-iord 4296  df-on 4298  df-xp 4553  df-rel 4554  df-cnv 4555  df-co 4556  df-dm 4557  df-rn 4558  df-iota 5096  df-fun 5133  df-fn 5134  df-f 5135  df-fv 5139  df-smo 6191
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator