ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ctssdc Unicode version

Theorem ctssdc 7276
Description: A set is countable iff there is a surjection from a decidable subset of the natural numbers onto it. The decidability condition is needed as shown at ctssexmid 7313. (Contributed by Jim Kingdon, 15-Aug-2023.)
Assertion
Ref Expression
ctssdc  |-  ( E. s ( s  C_  om 
/\  E. f  f : s -onto-> A  /\  A. n  e.  om DECID  n  e.  s )  <->  E. f  f : om -onto-> ( A 1o ) )
Distinct variable group:    A, f, s, n

Proof of Theorem ctssdc
Dummy variables  g  m  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simp3 1023 . . . . . . . . . . . . . . . . . 18  |-  ( ( s  C_  om  /\  A. n  e.  om DECID  n  e.  s  /\  f : s -onto-> A )  ->  f :
s -onto-> A )
2 fof 5547 . . . . . . . . . . . . . . . . . 18  |-  ( f : s -onto-> A  -> 
f : s --> A )
31, 2syl 14 . . . . . . . . . . . . . . . . 17  |-  ( ( s  C_  om  /\  A. n  e.  om DECID  n  e.  s  /\  f : s -onto-> A )  ->  f :
s --> A )
43ad3antrrr 492 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( s 
C_  om  /\  A. n  e.  om DECID  n  e.  s  /\  f : s -onto-> A )  /\  (/)  e.  s )  /\  m  e.  om )  /\  m  e.  s )  ->  f :
s --> A )
5 simpr 110 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( s 
C_  om  /\  A. n  e.  om DECID  n  e.  s  /\  f : s -onto-> A )  /\  (/)  e.  s )  /\  m  e.  om )  /\  m  e.  s )  ->  m  e.  s )
64, 5ffvelcdmd 5770 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( s 
C_  om  /\  A. n  e.  om DECID  n  e.  s  /\  f : s -onto-> A )  /\  (/)  e.  s )  /\  m  e.  om )  /\  m  e.  s )  ->  ( f `  m )  e.  A
)
73ad3antrrr 492 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( s 
C_  om  /\  A. n  e.  om DECID  n  e.  s  /\  f : s -onto-> A )  /\  (/)  e.  s )  /\  m  e.  om )  /\  -.  m  e.  s )  ->  f : s --> A )
8 simpllr 534 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( s 
C_  om  /\  A. n  e.  om DECID  n  e.  s  /\  f : s -onto-> A )  /\  (/)  e.  s )  /\  m  e.  om )  /\  -.  m  e.  s )  ->  (/)  e.  s )
97, 8ffvelcdmd 5770 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( s 
C_  om  /\  A. n  e.  om DECID  n  e.  s  /\  f : s -onto-> A )  /\  (/)  e.  s )  /\  m  e.  om )  /\  -.  m  e.  s )  ->  (
f `  (/) )  e.  A )
10 elequ1 2204 . . . . . . . . . . . . . . . . 17  |-  ( n  =  m  ->  (
n  e.  s  <->  m  e.  s ) )
1110dcbid 843 . . . . . . . . . . . . . . . 16  |-  ( n  =  m  ->  (DECID  n  e.  s  <-> DECID  m  e.  s )
)
12 simpll2 1061 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( s  C_  om 
/\  A. n  e.  om DECID  n  e.  s  /\  f : s -onto-> A )  /\  (/)  e.  s )  /\  m  e.  om )  ->  A. n  e.  om DECID  n  e.  s )
13 simpr 110 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( s  C_  om 
/\  A. n  e.  om DECID  n  e.  s  /\  f : s -onto-> A )  /\  (/)  e.  s )  /\  m  e.  om )  ->  m  e.  om )
1411, 12, 13rspcdva 2912 . . . . . . . . . . . . . . 15  |-  ( ( ( ( s  C_  om 
/\  A. n  e.  om DECID  n  e.  s  /\  f : s -onto-> A )  /\  (/)  e.  s )  /\  m  e.  om )  -> DECID 
m  e.  s )
156, 9, 14ifcldadc 3632 . . . . . . . . . . . . . 14  |-  ( ( ( ( s  C_  om 
/\  A. n  e.  om DECID  n  e.  s  /\  f : s -onto-> A )  /\  (/)  e.  s )  /\  m  e.  om )  ->  if ( m  e.  s ,  ( f `  m ) ,  ( f `  (/) ) )  e.  A
)
1615fmpttd 5789 . . . . . . . . . . . . 13  |-  ( ( ( s  C_  om  /\  A. n  e.  om DECID  n  e.  s  /\  f : s
-onto-> A )  /\  (/)  e.  s )  ->  ( m  e.  om  |->  if ( m  e.  s ,  ( f `  m ) ,  ( f `  (/) ) ) ) : om --> A )
1716ffnd 5473 . . . . . . . . . . . 12  |-  ( ( ( s  C_  om  /\  A. n  e.  om DECID  n  e.  s  /\  f : s
-onto-> A )  /\  (/)  e.  s )  ->  ( m  e.  om  |->  if ( m  e.  s ,  ( f `  m ) ,  ( f `  (/) ) ) )  Fn 
om )
18 fvelrnb 5680 . . . . . . . . . . . . . . 15  |-  ( ( m  e.  om  |->  if ( m  e.  s ,  ( f `  m ) ,  ( f `  (/) ) ) )  Fn  om  ->  ( y  e.  ran  (
m  e.  om  |->  if ( m  e.  s ,  ( f `  m ) ,  ( f `  (/) ) ) )  <->  E. z  e.  om  ( ( m  e. 
om  |->  if ( m  e.  s ,  ( f `  m ) ,  ( f `  (/) ) ) ) `  z )  =  y ) )
1917, 18syl 14 . . . . . . . . . . . . . 14  |-  ( ( ( s  C_  om  /\  A. n  e.  om DECID  n  e.  s  /\  f : s
-onto-> A )  /\  (/)  e.  s )  ->  ( y  e.  ran  ( m  e. 
om  |->  if ( m  e.  s ,  ( f `  m ) ,  ( f `  (/) ) ) )  <->  E. z  e.  om  ( ( m  e.  om  |->  if ( m  e.  s ,  ( f `  m
) ,  ( f `
 (/) ) ) ) `
 z )  =  y ) )
201ad2antrr 488 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( s  C_  om 
/\  A. n  e.  om DECID  n  e.  s  /\  f : s -onto-> A )  /\  (/)  e.  s )  /\  y  e.  A
)  ->  f :
s -onto-> A )
21 foelrn 5875 . . . . . . . . . . . . . . . . . 18  |-  ( ( f : s -onto-> A  /\  y  e.  A
)  ->  E. z  e.  s  y  =  ( f `  z
) )
2220, 21sylancom 420 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( s  C_  om 
/\  A. n  e.  om DECID  n  e.  s  /\  f : s -onto-> A )  /\  (/)  e.  s )  /\  y  e.  A
)  ->  E. z  e.  s  y  =  ( f `  z
) )
23 simpll1 1060 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( s  C_  om 
/\  A. n  e.  om DECID  n  e.  s  /\  f : s -onto-> A )  /\  (/)  e.  s )  /\  y  e.  A
)  ->  s  C_  om )
24 eqid 2229 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( m  e.  om  |->  if ( m  e.  s ,  ( f `  m
) ,  ( f `
 (/) ) ) )  =  ( m  e. 
om  |->  if ( m  e.  s ,  ( f `  m ) ,  ( f `  (/) ) ) )
25 elequ1 2204 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( m  =  z  ->  (
m  e.  s  <->  z  e.  s ) )
26 fveq2 5626 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( m  =  z  ->  (
f `  m )  =  ( f `  z ) )
2725, 26ifbieq1d 3625 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( m  =  z  ->  if ( m  e.  s ,  ( f `  m ) ,  ( f `  (/) ) )  =  if ( z  e.  s ,  ( f `  z ) ,  ( f `  (/) ) ) )
2823sselda 3224 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( ( ( s 
C_  om  /\  A. n  e.  om DECID  n  e.  s  /\  f : s -onto-> A )  /\  (/)  e.  s )  /\  y  e.  A
)  /\  z  e.  s )  ->  z  e.  om )
293ad4antr 494 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( ( ( ( ( s  C_  om  /\  A. n  e.  om DECID  n  e.  s  /\  f : s -onto-> A )  /\  (/)  e.  s )  /\  y  e.  A )  /\  z  e.  s )  /\  z  e.  s )  ->  f : s --> A )
30 simpr 110 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( ( ( ( ( s  C_  om  /\  A. n  e.  om DECID  n  e.  s  /\  f : s -onto-> A )  /\  (/)  e.  s )  /\  y  e.  A )  /\  z  e.  s )  /\  z  e.  s )  ->  z  e.  s )
3129, 30ffvelcdmd 5770 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( ( ( ( ( s  C_  om  /\  A. n  e.  om DECID  n  e.  s  /\  f : s -onto-> A )  /\  (/)  e.  s )  /\  y  e.  A )  /\  z  e.  s )  /\  z  e.  s )  ->  (
f `  z )  e.  A )
323ffvelcdmda 5769 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( ( s  C_  om  /\  A. n  e.  om DECID  n  e.  s  /\  f : s
-onto-> A )  /\  (/)  e.  s )  ->  ( f `  (/) )  e.  A
)
3332ad3antrrr 492 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( ( ( ( ( s  C_  om  /\  A. n  e.  om DECID  n  e.  s  /\  f : s -onto-> A )  /\  (/)  e.  s )  /\  y  e.  A )  /\  z  e.  s )  /\  -.  z  e.  s )  ->  ( f `  (/) )  e.  A )
34 elequ1 2204 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( n  =  z  ->  (
n  e.  s  <->  z  e.  s ) )
3534dcbid 843 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( n  =  z  ->  (DECID  n  e.  s  <-> DECID  z  e.  s )
)
36 simp2 1022 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ( s  C_  om  /\  A. n  e.  om DECID  n  e.  s  /\  f : s -onto-> A )  ->  A. n  e.  om DECID  n  e.  s )
3736ad3antrrr 492 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( ( ( ( s 
C_  om  /\  A. n  e.  om DECID  n  e.  s  /\  f : s -onto-> A )  /\  (/)  e.  s )  /\  y  e.  A
)  /\  z  e.  s )  ->  A. n  e.  om DECID  n  e.  s )
3835, 37, 28rspcdva 2912 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( ( ( ( s 
C_  om  /\  A. n  e.  om DECID  n  e.  s  /\  f : s -onto-> A )  /\  (/)  e.  s )  /\  y  e.  A
)  /\  z  e.  s )  -> DECID  z  e.  s
)
3931, 33, 38ifcldadc 3632 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( ( ( s 
C_  om  /\  A. n  e.  om DECID  n  e.  s  /\  f : s -onto-> A )  /\  (/)  e.  s )  /\  y  e.  A
)  /\  z  e.  s )  ->  if ( z  e.  s ,  ( f `  z ) ,  ( f `  (/) ) )  e.  A )
4024, 27, 28, 39fvmptd3 5727 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( ( ( s 
C_  om  /\  A. n  e.  om DECID  n  e.  s  /\  f : s -onto-> A )  /\  (/)  e.  s )  /\  y  e.  A
)  /\  z  e.  s )  ->  (
( m  e.  om  |->  if ( m  e.  s ,  ( f `  m ) ,  ( f `  (/) ) ) ) `  z )  =  if ( z  e.  s ,  ( f `  z ) ,  ( f `  (/) ) ) )
41 simpr 110 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( ( ( s 
C_  om  /\  A. n  e.  om DECID  n  e.  s  /\  f : s -onto-> A )  /\  (/)  e.  s )  /\  y  e.  A
)  /\  z  e.  s )  ->  z  e.  s )
4241iftrued 3609 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( ( ( s 
C_  om  /\  A. n  e.  om DECID  n  e.  s  /\  f : s -onto-> A )  /\  (/)  e.  s )  /\  y  e.  A
)  /\  z  e.  s )  ->  if ( z  e.  s ,  ( f `  z ) ,  ( f `  (/) ) )  =  ( f `  z ) )
4340, 42eqtrd 2262 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ( ( s 
C_  om  /\  A. n  e.  om DECID  n  e.  s  /\  f : s -onto-> A )  /\  (/)  e.  s )  /\  y  e.  A
)  /\  z  e.  s )  ->  (
( m  e.  om  |->  if ( m  e.  s ,  ( f `  m ) ,  ( f `  (/) ) ) ) `  z )  =  ( f `  z ) )
4443adantr 276 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( ( ( s  C_  om  /\  A. n  e.  om DECID  n  e.  s  /\  f : s -onto-> A )  /\  (/)  e.  s )  /\  y  e.  A )  /\  z  e.  s )  /\  y  =  ( f `  z ) )  -> 
( ( m  e. 
om  |->  if ( m  e.  s ,  ( f `  m ) ,  ( f `  (/) ) ) ) `  z )  =  ( f `  z ) )
45 simpr 110 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( ( ( s  C_  om  /\  A. n  e.  om DECID  n  e.  s  /\  f : s -onto-> A )  /\  (/)  e.  s )  /\  y  e.  A )  /\  z  e.  s )  /\  y  =  ( f `  z ) )  -> 
y  =  ( f `
 z ) )
4644, 45eqtr4d 2265 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( ( ( s  C_  om  /\  A. n  e.  om DECID  n  e.  s  /\  f : s -onto-> A )  /\  (/)  e.  s )  /\  y  e.  A )  /\  z  e.  s )  /\  y  =  ( f `  z ) )  -> 
( ( m  e. 
om  |->  if ( m  e.  s ,  ( f `  m ) ,  ( f `  (/) ) ) ) `  z )  =  y )
4746ex 115 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ( s 
C_  om  /\  A. n  e.  om DECID  n  e.  s  /\  f : s -onto-> A )  /\  (/)  e.  s )  /\  y  e.  A
)  /\  z  e.  s )  ->  (
y  =  ( f `
 z )  -> 
( ( m  e. 
om  |->  if ( m  e.  s ,  ( f `  m ) ,  ( f `  (/) ) ) ) `  z )  =  y ) )
4847reximdva 2632 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( s  C_  om 
/\  A. n  e.  om DECID  n  e.  s  /\  f : s -onto-> A )  /\  (/)  e.  s )  /\  y  e.  A
)  ->  ( E. z  e.  s  y  =  ( f `  z )  ->  E. z  e.  s  ( (
m  e.  om  |->  if ( m  e.  s ,  ( f `  m ) ,  ( f `  (/) ) ) ) `  z )  =  y ) )
49 ssrexv 3289 . . . . . . . . . . . . . . . . . 18  |-  ( s 
C_  om  ->  ( E. z  e.  s  ( ( m  e.  om  |->  if ( m  e.  s ,  ( f `  m ) ,  ( f `  (/) ) ) ) `  z )  =  y  ->  E. z  e.  om  ( ( m  e.  om  |->  if ( m  e.  s ,  ( f `  m
) ,  ( f `
 (/) ) ) ) `
 z )  =  y ) )
5023, 48, 49sylsyld 58 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( s  C_  om 
/\  A. n  e.  om DECID  n  e.  s  /\  f : s -onto-> A )  /\  (/)  e.  s )  /\  y  e.  A
)  ->  ( E. z  e.  s  y  =  ( f `  z )  ->  E. z  e.  om  ( ( m  e.  om  |->  if ( m  e.  s ,  ( f `  m
) ,  ( f `
 (/) ) ) ) `
 z )  =  y ) )
5122, 50mpd 13 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( s  C_  om 
/\  A. n  e.  om DECID  n  e.  s  /\  f : s -onto-> A )  /\  (/)  e.  s )  /\  y  e.  A
)  ->  E. z  e.  om  ( ( m  e.  om  |->  if ( m  e.  s ,  ( f `  m
) ,  ( f `
 (/) ) ) ) `
 z )  =  y )
5251ex 115 . . . . . . . . . . . . . . 15  |-  ( ( ( s  C_  om  /\  A. n  e.  om DECID  n  e.  s  /\  f : s
-onto-> A )  /\  (/)  e.  s )  ->  ( y  e.  A  ->  E. z  e.  om  ( ( m  e.  om  |->  if ( m  e.  s ,  ( f `  m
) ,  ( f `
 (/) ) ) ) `
 z )  =  y ) )
53 simpr 110 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( s 
C_  om  /\  A. n  e.  om DECID  n  e.  s  /\  f : s -onto-> A )  /\  (/)  e.  s )  /\  z  e.  om )  /\  ( ( m  e.  om  |->  if ( m  e.  s ,  ( f `  m
) ,  ( f `
 (/) ) ) ) `
 z )  =  y )  ->  (
( m  e.  om  |->  if ( m  e.  s ,  ( f `  m ) ,  ( f `  (/) ) ) ) `  z )  =  y )
54 simpr 110 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( s  C_  om 
/\  A. n  e.  om DECID  n  e.  s  /\  f : s -onto-> A )  /\  (/)  e.  s )  /\  z  e.  om )  ->  z  e.  om )
553ad3antrrr 492 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ( ( s 
C_  om  /\  A. n  e.  om DECID  n  e.  s  /\  f : s -onto-> A )  /\  (/)  e.  s )  /\  z  e.  om )  /\  z  e.  s )  ->  f :
s --> A )
56 simpr 110 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ( ( s 
C_  om  /\  A. n  e.  om DECID  n  e.  s  /\  f : s -onto-> A )  /\  (/)  e.  s )  /\  z  e.  om )  /\  z  e.  s )  ->  z  e.  s )
5755, 56ffvelcdmd 5770 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( ( s 
C_  om  /\  A. n  e.  om DECID  n  e.  s  /\  f : s -onto-> A )  /\  (/)  e.  s )  /\  z  e.  om )  /\  z  e.  s )  ->  ( f `  z )  e.  A
)
5832ad2antrr 488 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( ( s 
C_  om  /\  A. n  e.  om DECID  n  e.  s  /\  f : s -onto-> A )  /\  (/)  e.  s )  /\  z  e.  om )  /\  -.  z  e.  s )  ->  (
f `  (/) )  e.  A )
59 simpll2 1061 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ( s  C_  om 
/\  A. n  e.  om DECID  n  e.  s  /\  f : s -onto-> A )  /\  (/)  e.  s )  /\  z  e.  om )  ->  A. n  e.  om DECID  n  e.  s )
6035, 59, 54rspcdva 2912 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( s  C_  om 
/\  A. n  e.  om DECID  n  e.  s  /\  f : s -onto-> A )  /\  (/)  e.  s )  /\  z  e.  om )  -> DECID 
z  e.  s )
6157, 58, 60ifcldadc 3632 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( s  C_  om 
/\  A. n  e.  om DECID  n  e.  s  /\  f : s -onto-> A )  /\  (/)  e.  s )  /\  z  e.  om )  ->  if ( z  e.  s ,  ( f `  z ) ,  ( f `  (/) ) )  e.  A
)
6224, 27, 54, 61fvmptd3 5727 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( s  C_  om 
/\  A. n  e.  om DECID  n  e.  s  /\  f : s -onto-> A )  /\  (/)  e.  s )  /\  z  e.  om )  ->  ( ( m  e.  om  |->  if ( m  e.  s ,  ( f `  m
) ,  ( f `
 (/) ) ) ) `
 z )  =  if ( z  e.  s ,  ( f `
 z ) ,  ( f `  (/) ) ) )
6362, 61eqeltrd 2306 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( s  C_  om 
/\  A. n  e.  om DECID  n  e.  s  /\  f : s -onto-> A )  /\  (/)  e.  s )  /\  z  e.  om )  ->  ( ( m  e.  om  |->  if ( m  e.  s ,  ( f `  m
) ,  ( f `
 (/) ) ) ) `
 z )  e.  A )
6463adantr 276 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( s 
C_  om  /\  A. n  e.  om DECID  n  e.  s  /\  f : s -onto-> A )  /\  (/)  e.  s )  /\  z  e.  om )  /\  ( ( m  e.  om  |->  if ( m  e.  s ,  ( f `  m
) ,  ( f `
 (/) ) ) ) `
 z )  =  y )  ->  (
( m  e.  om  |->  if ( m  e.  s ,  ( f `  m ) ,  ( f `  (/) ) ) ) `  z )  e.  A )
6553, 64eqeltrrd 2307 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( s 
C_  om  /\  A. n  e.  om DECID  n  e.  s  /\  f : s -onto-> A )  /\  (/)  e.  s )  /\  z  e.  om )  /\  ( ( m  e.  om  |->  if ( m  e.  s ,  ( f `  m
) ,  ( f `
 (/) ) ) ) `
 z )  =  y )  ->  y  e.  A )
6665rexlimdva2 2651 . . . . . . . . . . . . . . 15  |-  ( ( ( s  C_  om  /\  A. n  e.  om DECID  n  e.  s  /\  f : s
-onto-> A )  /\  (/)  e.  s )  ->  ( E. z  e.  om  (
( m  e.  om  |->  if ( m  e.  s ,  ( f `  m ) ,  ( f `  (/) ) ) ) `  z )  =  y  ->  y  e.  A ) )
6752, 66impbid 129 . . . . . . . . . . . . . 14  |-  ( ( ( s  C_  om  /\  A. n  e.  om DECID  n  e.  s  /\  f : s
-onto-> A )  /\  (/)  e.  s )  ->  ( y  e.  A  <->  E. z  e.  om  ( ( m  e. 
om  |->  if ( m  e.  s ,  ( f `  m ) ,  ( f `  (/) ) ) ) `  z )  =  y ) )
6819, 67bitr4d 191 . . . . . . . . . . . . 13  |-  ( ( ( s  C_  om  /\  A. n  e.  om DECID  n  e.  s  /\  f : s
-onto-> A )  /\  (/)  e.  s )  ->  ( y  e.  ran  ( m  e. 
om  |->  if ( m  e.  s ,  ( f `  m ) ,  ( f `  (/) ) ) )  <->  y  e.  A ) )
6968eqrdv 2227 . . . . . . . . . . . 12  |-  ( ( ( s  C_  om  /\  A. n  e.  om DECID  n  e.  s  /\  f : s
-onto-> A )  /\  (/)  e.  s )  ->  ran  ( m  e.  om  |->  if ( m  e.  s ,  ( f `  m
) ,  ( f `
 (/) ) ) )  =  A )
70 df-fo 5323 . . . . . . . . . . . 12  |-  ( ( m  e.  om  |->  if ( m  e.  s ,  ( f `  m ) ,  ( f `  (/) ) ) ) : om -onto-> A  <->  ( ( m  e.  om  |->  if ( m  e.  s ,  ( f `  m ) ,  ( f `  (/) ) ) )  Fn  om  /\  ran  ( m  e.  om  |->  if ( m  e.  s ,  ( f `  m ) ,  ( f `  (/) ) ) )  =  A ) )
7117, 69, 70sylanbrc 417 . . . . . . . . . . 11  |-  ( ( ( s  C_  om  /\  A. n  e.  om DECID  n  e.  s  /\  f : s
-onto-> A )  /\  (/)  e.  s )  ->  ( m  e.  om  |->  if ( m  e.  s ,  ( f `  m ) ,  ( f `  (/) ) ) ) : om -onto-> A )
72 omex 4684 . . . . . . . . . . . . 13  |-  om  e.  _V
7372mptex 5864 . . . . . . . . . . . 12  |-  ( m  e.  om  |->  if ( m  e.  s ,  ( f `  m
) ,  ( f `
 (/) ) ) )  e.  _V
74 foeq1 5543 . . . . . . . . . . . 12  |-  ( g  =  ( m  e. 
om  |->  if ( m  e.  s ,  ( f `  m ) ,  ( f `  (/) ) ) )  -> 
( g : om -onto-> A 
<->  ( m  e.  om  |->  if ( m  e.  s ,  ( f `  m ) ,  ( f `  (/) ) ) ) : om -onto-> A
) )
7573, 74spcev 2898 . . . . . . . . . . 11  |-  ( ( m  e.  om  |->  if ( m  e.  s ,  ( f `  m ) ,  ( f `  (/) ) ) ) : om -onto-> A  ->  E. g  g : om -onto-> A )
7671, 75syl 14 . . . . . . . . . 10  |-  ( ( ( s  C_  om  /\  A. n  e.  om DECID  n  e.  s  /\  f : s
-onto-> A )  /\  (/)  e.  s )  ->  E. g 
g : om -onto-> A
)
77 elex2 2816 . . . . . . . . . . . 12  |-  ( ( f `  (/) )  e.  A  ->  E. x  x  e.  A )
7832, 77syl 14 . . . . . . . . . . 11  |-  ( ( ( s  C_  om  /\  A. n  e.  om DECID  n  e.  s  /\  f : s
-onto-> A )  /\  (/)  e.  s )  ->  E. x  x  e.  A )
79 ctm 7272 . . . . . . . . . . 11  |-  ( E. x  x  e.  A  ->  ( E. g  g : om -onto-> ( A 1o )  <->  E. g  g : om -onto-> A ) )
8078, 79syl 14 . . . . . . . . . 10  |-  ( ( ( s  C_  om  /\  A. n  e.  om DECID  n  e.  s  /\  f : s
-onto-> A )  /\  (/)  e.  s )  ->  ( E. g  g : om -onto->
( A 1o )  <->  E. g  g : om -onto-> A ) )
8176, 80mpbird 167 . . . . . . . . 9  |-  ( ( ( s  C_  om  /\  A. n  e.  om DECID  n  e.  s  /\  f : s
-onto-> A )  /\  (/)  e.  s )  ->  E. g 
g : om -onto-> ( A 1o ) )
82 simpl1 1024 . . . . . . . . . 10  |-  ( ( ( s  C_  om  /\  A. n  e.  om DECID  n  e.  s  /\  f : s
-onto-> A )  /\  -.  (/) 
e.  s )  -> 
s  C_  om )
8336adantr 276 . . . . . . . . . 10  |-  ( ( ( s  C_  om  /\  A. n  e.  om DECID  n  e.  s  /\  f : s
-onto-> A )  /\  -.  (/) 
e.  s )  ->  A. n  e.  om DECID  n  e.  s )
841adantr 276 . . . . . . . . . 10  |-  ( ( ( s  C_  om  /\  A. n  e.  om DECID  n  e.  s  /\  f : s
-onto-> A )  /\  -.  (/) 
e.  s )  -> 
f : s -onto-> A )
85 simpr 110 . . . . . . . . . 10  |-  ( ( ( s  C_  om  /\  A. n  e.  om DECID  n  e.  s  /\  f : s
-onto-> A )  /\  -.  (/) 
e.  s )  ->  -.  (/)  e.  s )
8682, 83, 84, 85ctssdclemn0 7273 . . . . . . . . 9  |-  ( ( ( s  C_  om  /\  A. n  e.  om DECID  n  e.  s  /\  f : s
-onto-> A )  /\  -.  (/) 
e.  s )  ->  E. g  g : om -onto-> ( A 1o ) )
87 eleq1 2292 . . . . . . . . . . . 12  |-  ( n  =  (/)  ->  ( n  e.  s  <->  (/)  e.  s ) )
8887dcbid 843 . . . . . . . . . . 11  |-  ( n  =  (/)  ->  (DECID  n  e.  s  <-> DECID  (/) 
e.  s ) )
89 peano1 4685 . . . . . . . . . . . 12  |-  (/)  e.  om
9089a1i 9 . . . . . . . . . . 11  |-  ( ( s  C_  om  /\  A. n  e.  om DECID  n  e.  s  /\  f : s -onto-> A )  ->  (/)  e.  om )
9188, 36, 90rspcdva 2912 . . . . . . . . . 10  |-  ( ( s  C_  om  /\  A. n  e.  om DECID  n  e.  s  /\  f : s -onto-> A )  -> DECID  (/)  e.  s )
92 exmiddc 841 . . . . . . . . . 10  |-  (DECID  (/)  e.  s  ->  ( (/)  e.  s  \/  -.  (/)  e.  s ) )
9391, 92syl 14 . . . . . . . . 9  |-  ( ( s  C_  om  /\  A. n  e.  om DECID  n  e.  s  /\  f : s -onto-> A )  ->  ( (/)  e.  s  \/  -.  (/)  e.  s ) )
9481, 86, 93mpjaodan 803 . . . . . . . 8  |-  ( ( s  C_  om  /\  A. n  e.  om DECID  n  e.  s  /\  f : s -onto-> A )  ->  E. g 
g : om -onto-> ( A 1o ) )
95943expia 1229 . . . . . . 7  |-  ( ( s  C_  om  /\  A. n  e.  om DECID  n  e.  s
)  ->  ( f : s -onto-> A  ->  E. g  g : om -onto-> ( A 1o ) ) )
9695exlimdv 1865 . . . . . 6  |-  ( ( s  C_  om  /\  A. n  e.  om DECID  n  e.  s
)  ->  ( E. f  f : s
-onto-> A  ->  E. g 
g : om -onto-> ( A 1o ) ) )
97963impia 1224 . . . . 5  |-  ( ( s  C_  om  /\  A. n  e.  om DECID  n  e.  s  /\  E. f  f : s -onto-> A )  ->  E. g 
g : om -onto-> ( A 1o ) )
98973com23 1233 . . . 4  |-  ( ( s  C_  om  /\  E. f  f : s
-onto-> A  /\  A. n  e.  om DECID  n  e.  s )  ->  E. g  g : om -onto-> ( A 1o ) )
9998exlimiv 1644 . . 3  |-  ( E. s ( s  C_  om 
/\  E. f  f : s -onto-> A  /\  A. n  e.  om DECID  n  e.  s )  ->  E. g  g : om -onto-> ( A 1o ) )
100 foeq1 5543 . . . 4  |-  ( g  =  f  ->  (
g : om -onto-> ( A 1o )  <->  f : om -onto-> ( A 1o ) ) )
101100cbvexv 1965 . . 3  |-  ( E. g  g : om -onto->
( A 1o )  <->  E. f  f : om -onto->
( A 1o )
)
10299, 101sylib 122 . 2  |-  ( E. s ( s  C_  om 
/\  E. f  f : s -onto-> A  /\  A. n  e.  om DECID  n  e.  s )  ->  E. f  f : om -onto-> ( A 1o ) )
103 ctssdclemr 7275 . 2  |-  ( E. f  f : om -onto->
( A 1o )  ->  E. s ( s 
C_  om  /\  E. f 
f : s -onto-> A  /\  A. n  e. 
om DECID 
n  e.  s ) )
104102, 103impbii 126 1  |-  ( E. s ( s  C_  om 
/\  E. f  f : s -onto-> A  /\  A. n  e.  om DECID  n  e.  s )  <->  E. f  f : om -onto-> ( A 1o ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    /\ wa 104    <-> wb 105    \/ wo 713  DECID wdc 839    /\ w3a 1002    = wceq 1395   E.wex 1538    e. wcel 2200   A.wral 2508   E.wrex 2509    C_ wss 3197   (/)c0 3491   ifcif 3602    |-> cmpt 4144   omcom 4681   ran crn 4719    Fn wfn 5312   -->wf 5313   -onto->wfo 5315   ` cfv 5317   1oc1o 6553   ⊔ cdju 7200
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4198  ax-sep 4201  ax-nul 4209  ax-pow 4257  ax-pr 4292  ax-un 4523  ax-iinf 4679
This theorem depends on definitions:  df-bi 117  df-dc 840  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-if 3603  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-int 3923  df-iun 3966  df-br 4083  df-opab 4145  df-mpt 4146  df-tr 4182  df-id 4383  df-iord 4456  df-on 4458  df-suc 4461  df-iom 4682  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-rn 4729  df-res 4730  df-ima 4731  df-iota 5277  df-fun 5319  df-fn 5320  df-f 5321  df-f1 5322  df-fo 5323  df-f1o 5324  df-fv 5325  df-1st 6284  df-2nd 6285  df-1o 6560  df-dju 7201  df-inl 7210  df-inr 7211  df-case 7247
This theorem is referenced by:  ctiunct  13006  ssomct  13011
  Copyright terms: Public domain W3C validator