ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  trintssm Unicode version

Theorem trintssm 4147
Description: Any inhabited transitive class includes its intersection. Similar to Exercise 3 in [TakeutiZaring] p. 44 (which mistakenly does not include the inhabitedness hypothesis). (Contributed by Jim Kingdon, 22-Aug-2018.)
Assertion
Ref Expression
trintssm  |-  ( ( Tr  A  /\  E. x  x  e.  A
)  ->  |^| A  C_  A )
Distinct variable group:    x, A

Proof of Theorem trintssm
StepHypRef Expression
1 intss1 3889 . . . 4  |-  ( x  e.  A  ->  |^| A  C_  x )
2 trss 4140 . . . . 5  |-  ( Tr  A  ->  ( x  e.  A  ->  x  C_  A ) )
32com12 30 . . . 4  |-  ( x  e.  A  ->  ( Tr  A  ->  x  C_  A ) )
4 sstr2 3190 . . . 4  |-  ( |^| A  C_  x  ->  (
x  C_  A  ->  |^| A  C_  A )
)
51, 3, 4sylsyld 58 . . 3  |-  ( x  e.  A  ->  ( Tr  A  ->  |^| A  C_  A ) )
65exlimiv 1612 . 2  |-  ( E. x  x  e.  A  ->  ( Tr  A  ->  |^| A  C_  A )
)
76impcom 125 1  |-  ( ( Tr  A  /\  E. x  x  e.  A
)  ->  |^| A  C_  A )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104   E.wex 1506    e. wcel 2167    C_ wss 3157   |^|cint 3874   Tr wtr 4131
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-v 2765  df-in 3163  df-ss 3170  df-uni 3840  df-int 3875  df-tr 4132
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator