ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  trintssm Unicode version

Theorem trintssm 4158
Description: Any inhabited transitive class includes its intersection. Similar to Exercise 3 in [TakeutiZaring] p. 44 (which mistakenly does not include the inhabitedness hypothesis). (Contributed by Jim Kingdon, 22-Aug-2018.)
Assertion
Ref Expression
trintssm  |-  ( ( Tr  A  /\  E. x  x  e.  A
)  ->  |^| A  C_  A )
Distinct variable group:    x, A

Proof of Theorem trintssm
StepHypRef Expression
1 intss1 3900 . . . 4  |-  ( x  e.  A  ->  |^| A  C_  x )
2 trss 4151 . . . . 5  |-  ( Tr  A  ->  ( x  e.  A  ->  x  C_  A ) )
32com12 30 . . . 4  |-  ( x  e.  A  ->  ( Tr  A  ->  x  C_  A ) )
4 sstr2 3200 . . . 4  |-  ( |^| A  C_  x  ->  (
x  C_  A  ->  |^| A  C_  A )
)
51, 3, 4sylsyld 58 . . 3  |-  ( x  e.  A  ->  ( Tr  A  ->  |^| A  C_  A ) )
65exlimiv 1621 . 2  |-  ( E. x  x  e.  A  ->  ( Tr  A  ->  |^| A  C_  A )
)
76impcom 125 1  |-  ( ( Tr  A  /\  E. x  x  e.  A
)  ->  |^| A  C_  A )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104   E.wex 1515    e. wcel 2176    C_ wss 3166   |^|cint 3885   Tr wtr 4142
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-ext 2187
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1484  df-sb 1786  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ral 2489  df-v 2774  df-in 3172  df-ss 3179  df-uni 3851  df-int 3886  df-tr 4143
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator