ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  archsr Unicode version

Theorem archsr 7614
Description: For any signed real, there is an integer that is greater than it. This is also known as the "archimedean property". The expression  [ <. ( <. { l  |  l 
<Q  [ <. x ,  1o >. ]  ~Q  },  { u  |  [ <. x ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R is the embedding of the positive integer  x into the signed reals. (Contributed by Jim Kingdon, 23-Apr-2020.)
Assertion
Ref Expression
archsr  |-  ( A  e.  R.  ->  E. x  e.  N.  A  <R  [ <. (
<. { l  |  l 
<Q  [ <. x ,  1o >. ]  ~Q  } ,  { u  |  [ <. x ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  )
Distinct variable group:    A, l, u, x

Proof of Theorem archsr
Dummy variables  w  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-nr 7559 . 2  |-  R.  =  ( ( P.  X.  P. ) /.  ~R  )
2 breq1 3940 . . 3  |-  ( [
<. z ,  w >. ]  ~R  =  A  -> 
( [ <. z ,  w >. ]  ~R  <R  [
<. ( <. { l  |  l  <Q  [ <. x ,  1o >. ]  ~Q  } ,  { u  |  [ <. x ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  <->  A  <R  [
<. ( <. { l  |  l  <Q  [ <. x ,  1o >. ]  ~Q  } ,  { u  |  [ <. x ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  )
)
32rexbidv 2439 . 2  |-  ( [
<. z ,  w >. ]  ~R  =  A  -> 
( E. x  e. 
N.  [ <. z ,  w >. ]  ~R  <R  [
<. ( <. { l  |  l  <Q  [ <. x ,  1o >. ]  ~Q  } ,  { u  |  [ <. x ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  <->  E. x  e.  N.  A  <R  [ <. (
<. { l  |  l 
<Q  [ <. x ,  1o >. ]  ~Q  } ,  { u  |  [ <. x ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  )
)
4 1pr 7386 . . . . . . 7  |-  1P  e.  P.
5 addclpr 7369 . . . . . . 7  |-  ( ( z  e.  P.  /\  1P  e.  P. )  -> 
( z  +P.  1P )  e.  P. )
64, 5mpan2 422 . . . . . 6  |-  ( z  e.  P.  ->  (
z  +P.  1P )  e.  P. )
7 archpr 7475 . . . . . 6  |-  ( ( z  +P.  1P )  e.  P.  ->  E. x  e.  N.  ( z  +P. 
1P )  <P  <. { l  |  l  <Q  [ <. x ,  1o >. ]  ~Q  } ,  { u  |  [ <. x ,  1o >. ]  ~Q  <Q  u } >. )
86, 7syl 14 . . . . 5  |-  ( z  e.  P.  ->  E. x  e.  N.  ( z  +P. 
1P )  <P  <. { l  |  l  <Q  [ <. x ,  1o >. ]  ~Q  } ,  { u  |  [ <. x ,  1o >. ]  ~Q  <Q  u } >. )
98adantr 274 . . . 4  |-  ( ( z  e.  P.  /\  w  e.  P. )  ->  E. x  e.  N.  ( z  +P.  1P )  <P  <. { l  |  l  <Q  [ <. x ,  1o >. ]  ~Q  } ,  { u  |  [ <. x ,  1o >. ]  ~Q  <Q  u } >. )
10 nnprlu 7385 . . . . . . . . . 10  |-  ( x  e.  N.  ->  <. { l  |  l  <Q  [ <. x ,  1o >. ]  ~Q  } ,  { u  |  [ <. x ,  1o >. ]  ~Q  <Q  u } >.  e.  P. )
1110adantl 275 . . . . . . . . 9  |-  ( ( ( z  e.  P.  /\  w  e.  P. )  /\  x  e.  N. )  ->  <. { l  |  l  <Q  [ <. x ,  1o >. ]  ~Q  } ,  { u  |  [ <. x ,  1o >. ]  ~Q  <Q  u } >.  e.  P. )
12 addclpr 7369 . . . . . . . . 9  |-  ( (
<. { l  |  l 
<Q  [ <. x ,  1o >. ]  ~Q  } ,  { u  |  [ <. x ,  1o >. ]  ~Q  <Q  u } >.  e.  P.  /\  1P  e.  P. )  ->  ( <. { l  |  l 
<Q  [ <. x ,  1o >. ]  ~Q  } ,  { u  |  [ <. x ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P )  e. 
P. )
1311, 4, 12sylancl 410 . . . . . . . 8  |-  ( ( ( z  e.  P.  /\  w  e.  P. )  /\  x  e.  N. )  ->  ( <. { l  |  l  <Q  [ <. x ,  1o >. ]  ~Q  } ,  { u  |  [ <. x ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P )  e.  P. )
14 simplr 520 . . . . . . . 8  |-  ( ( ( z  e.  P.  /\  w  e.  P. )  /\  x  e.  N. )  ->  w  e.  P. )
15 ltaddpr 7429 . . . . . . . 8  |-  ( ( ( <. { l  |  l  <Q  [ <. x ,  1o >. ]  ~Q  } ,  { u  |  [ <. x ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P )  e. 
P.  /\  w  e.  P. )  ->  ( <. { l  |  l 
<Q  [ <. x ,  1o >. ]  ~Q  } ,  { u  |  [ <. x ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P )  <P 
( ( <. { l  |  l  <Q  [ <. x ,  1o >. ]  ~Q  } ,  { u  |  [ <. x ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P )  +P.  w ) )
1613, 14, 15syl2anc 409 . . . . . . 7  |-  ( ( ( z  e.  P.  /\  w  e.  P. )  /\  x  e.  N. )  ->  ( <. { l  |  l  <Q  [ <. x ,  1o >. ]  ~Q  } ,  { u  |  [ <. x ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P )  <P  ( ( <. { l  |  l  <Q  [ <. x ,  1o >. ]  ~Q  } ,  { u  |  [ <. x ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P )  +P.  w ) )
17 addcomprg 7410 . . . . . . . 8  |-  ( ( w  e.  P.  /\  ( <. { l  |  l  <Q  [ <. x ,  1o >. ]  ~Q  } ,  { u  |  [ <. x ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P )  e. 
P. )  ->  (
w  +P.  ( <. { l  |  l  <Q  [ <. x ,  1o >. ]  ~Q  } ,  { u  |  [ <. x ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) )  =  ( ( <. { l  |  l 
<Q  [ <. x ,  1o >. ]  ~Q  } ,  { u  |  [ <. x ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P )  +P.  w ) )
1814, 13, 17syl2anc 409 . . . . . . 7  |-  ( ( ( z  e.  P.  /\  w  e.  P. )  /\  x  e.  N. )  ->  ( w  +P.  ( <. { l  |  l  <Q  [ <. x ,  1o >. ]  ~Q  } ,  { u  |  [ <. x ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) )  =  ( ( <. { l  |  l 
<Q  [ <. x ,  1o >. ]  ~Q  } ,  { u  |  [ <. x ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P )  +P.  w ) )
1916, 18breqtrrd 3964 . . . . . 6  |-  ( ( ( z  e.  P.  /\  w  e.  P. )  /\  x  e.  N. )  ->  ( <. { l  |  l  <Q  [ <. x ,  1o >. ]  ~Q  } ,  { u  |  [ <. x ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P )  <P  ( w  +P.  ( <. { l  |  l 
<Q  [ <. x ,  1o >. ]  ~Q  } ,  { u  |  [ <. x ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ) )
20 ltaddpr 7429 . . . . . . . 8  |-  ( (
<. { l  |  l 
<Q  [ <. x ,  1o >. ]  ~Q  } ,  { u  |  [ <. x ,  1o >. ]  ~Q  <Q  u } >.  e.  P.  /\  1P  e.  P. )  ->  <. { l  |  l  <Q  [ <. x ,  1o >. ]  ~Q  } ,  { u  |  [ <. x ,  1o >. ]  ~Q  <Q  u } >.  <P  ( <. { l  |  l  <Q  [ <. x ,  1o >. ]  ~Q  } ,  { u  |  [ <. x ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P )
)
2111, 4, 20sylancl 410 . . . . . . 7  |-  ( ( ( z  e.  P.  /\  w  e.  P. )  /\  x  e.  N. )  ->  <. { l  |  l  <Q  [ <. x ,  1o >. ]  ~Q  } ,  { u  |  [ <. x ,  1o >. ]  ~Q  <Q  u } >.  <P  ( <. { l  |  l  <Q  [ <. x ,  1o >. ]  ~Q  } ,  { u  |  [ <. x ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P )
)
22 ltsopr 7428 . . . . . . . . 9  |-  <P  Or  P.
23 ltrelpr 7337 . . . . . . . . 9  |-  <P  C_  ( P.  X.  P. )
2422, 23sotri 4942 . . . . . . . 8  |-  ( ( ( z  +P.  1P )  <P  <. { l  |  l  <Q  [ <. x ,  1o >. ]  ~Q  } ,  { u  |  [ <. x ,  1o >. ]  ~Q  <Q  u } >.  /\  <. { l  |  l  <Q  [ <. x ,  1o >. ]  ~Q  } ,  { u  |  [ <. x ,  1o >. ]  ~Q  <Q  u } >.  <P  ( <. { l  |  l  <Q  [ <. x ,  1o >. ]  ~Q  } ,  { u  |  [ <. x ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P )
)  ->  ( z  +P.  1P )  <P  ( <. { l  |  l 
<Q  [ <. x ,  1o >. ]  ~Q  } ,  { u  |  [ <. x ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) )
2524expcom 115 . . . . . . 7  |-  ( <. { l  |  l 
<Q  [ <. x ,  1o >. ]  ~Q  } ,  { u  |  [ <. x ,  1o >. ]  ~Q  <Q  u } >.  <P  ( <. { l  |  l  <Q  [ <. x ,  1o >. ]  ~Q  } ,  { u  |  [ <. x ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P )  ->  ( ( z  +P. 
1P )  <P  <. { l  |  l  <Q  [ <. x ,  1o >. ]  ~Q  } ,  { u  |  [ <. x ,  1o >. ]  ~Q  <Q  u } >.  ->  ( z  +P.  1P )  <P  ( <. { l  |  l 
<Q  [ <. x ,  1o >. ]  ~Q  } ,  { u  |  [ <. x ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ) )
2621, 25syl 14 . . . . . 6  |-  ( ( ( z  e.  P.  /\  w  e.  P. )  /\  x  e.  N. )  ->  ( ( z  +P.  1P )  <P  <. { l  |  l 
<Q  [ <. x ,  1o >. ]  ~Q  } ,  { u  |  [ <. x ,  1o >. ]  ~Q  <Q  u } >.  ->  ( z  +P. 
1P )  <P  ( <. { l  |  l 
<Q  [ <. x ,  1o >. ]  ~Q  } ,  { u  |  [ <. x ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ) )
2722, 23sotri 4942 . . . . . . 7  |-  ( ( ( z  +P.  1P )  <P  ( <. { l  |  l  <Q  [ <. x ,  1o >. ]  ~Q  } ,  { u  |  [ <. x ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P )  /\  ( <. { l  |  l  <Q  [ <. x ,  1o >. ]  ~Q  } ,  { u  |  [ <. x ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P )  <P 
( w  +P.  ( <. { l  |  l 
<Q  [ <. x ,  1o >. ]  ~Q  } ,  { u  |  [ <. x ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ) )  ->  ( z  +P.  1P )  <P  (
w  +P.  ( <. { l  |  l  <Q  [ <. x ,  1o >. ]  ~Q  } ,  { u  |  [ <. x ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ) )
2827expcom 115 . . . . . 6  |-  ( (
<. { l  |  l 
<Q  [ <. x ,  1o >. ]  ~Q  } ,  { u  |  [ <. x ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P )  <P 
( w  +P.  ( <. { l  |  l 
<Q  [ <. x ,  1o >. ]  ~Q  } ,  { u  |  [ <. x ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) )  ->  ( ( z  +P.  1P )  <P 
( <. { l  |  l  <Q  [ <. x ,  1o >. ]  ~Q  } ,  { u  |  [ <. x ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P )  -> 
( z  +P.  1P )  <P  ( w  +P.  ( <. { l  |  l  <Q  [ <. x ,  1o >. ]  ~Q  } ,  { u  |  [ <. x ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ) ) )
2919, 26, 28sylsyld 58 . . . . 5  |-  ( ( ( z  e.  P.  /\  w  e.  P. )  /\  x  e.  N. )  ->  ( ( z  +P.  1P )  <P  <. { l  |  l 
<Q  [ <. x ,  1o >. ]  ~Q  } ,  { u  |  [ <. x ,  1o >. ]  ~Q  <Q  u } >.  ->  ( z  +P. 
1P )  <P  (
w  +P.  ( <. { l  |  l  <Q  [ <. x ,  1o >. ]  ~Q  } ,  { u  |  [ <. x ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ) ) )
3029reximdva 2537 . . . 4  |-  ( ( z  e.  P.  /\  w  e.  P. )  ->  ( E. x  e. 
N.  ( z  +P. 
1P )  <P  <. { l  |  l  <Q  [ <. x ,  1o >. ]  ~Q  } ,  { u  |  [ <. x ,  1o >. ]  ~Q  <Q  u } >.  ->  E. x  e.  N.  ( z  +P. 
1P )  <P  (
w  +P.  ( <. { l  |  l  <Q  [ <. x ,  1o >. ]  ~Q  } ,  { u  |  [ <. x ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ) ) )
319, 30mpd 13 . . 3  |-  ( ( z  e.  P.  /\  w  e.  P. )  ->  E. x  e.  N.  ( z  +P.  1P )  <P  ( w  +P.  ( <. { l  |  l  <Q  [ <. x ,  1o >. ]  ~Q  } ,  { u  |  [ <. x ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ) )
32 simpl 108 . . . . 5  |-  ( ( ( z  e.  P.  /\  w  e.  P. )  /\  x  e.  N. )  ->  ( z  e. 
P.  /\  w  e.  P. ) )
334a1i 9 . . . . 5  |-  ( ( ( z  e.  P.  /\  w  e.  P. )  /\  x  e.  N. )  ->  1P  e.  P. )
34 ltsrprg 7579 . . . . 5  |-  ( ( ( z  e.  P.  /\  w  e.  P. )  /\  ( ( <. { l  |  l  <Q  [ <. x ,  1o >. ]  ~Q  } ,  { u  |  [ <. x ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P )  e.  P.  /\  1P  e.  P. ) )  ->  ( [ <. z ,  w >. ]  ~R  <R  [ <. (
<. { l  |  l 
<Q  [ <. x ,  1o >. ]  ~Q  } ,  { u  |  [ <. x ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  <->  ( z  +P.  1P )  <P  (
w  +P.  ( <. { l  |  l  <Q  [ <. x ,  1o >. ]  ~Q  } ,  { u  |  [ <. x ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ) ) )
3532, 13, 33, 34syl12anc 1215 . . . 4  |-  ( ( ( z  e.  P.  /\  w  e.  P. )  /\  x  e.  N. )  ->  ( [ <. z ,  w >. ]  ~R  <R  [ <. ( <. { l  |  l  <Q  [ <. x ,  1o >. ]  ~Q  } ,  { u  |  [ <. x ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  <->  ( z  +P.  1P )  <P  (
w  +P.  ( <. { l  |  l  <Q  [ <. x ,  1o >. ]  ~Q  } ,  { u  |  [ <. x ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ) ) )
3635rexbidva 2435 . . 3  |-  ( ( z  e.  P.  /\  w  e.  P. )  ->  ( E. x  e. 
N.  [ <. z ,  w >. ]  ~R  <R  [
<. ( <. { l  |  l  <Q  [ <. x ,  1o >. ]  ~Q  } ,  { u  |  [ <. x ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  <->  E. x  e.  N.  ( z  +P. 
1P )  <P  (
w  +P.  ( <. { l  |  l  <Q  [ <. x ,  1o >. ]  ~Q  } ,  { u  |  [ <. x ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ) ) )
3731, 36mpbird 166 . 2  |-  ( ( z  e.  P.  /\  w  e.  P. )  ->  E. x  e.  N.  [
<. z ,  w >. ]  ~R  <R  [ <. ( <. { l  |  l 
<Q  [ <. x ,  1o >. ]  ~Q  } ,  { u  |  [ <. x ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  )
381, 3, 37ecoptocl 6524 1  |-  ( A  e.  R.  ->  E. x  e.  N.  A  <R  [ <. (
<. { l  |  l 
<Q  [ <. x ,  1o >. ]  ~Q  } ,  { u  |  [ <. x ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    = wceq 1332    e. wcel 1481   {cab 2126   E.wrex 2418   <.cop 3535   class class class wbr 3937  (class class class)co 5782   1oc1o 6314   [cec 6435   N.cnpi 7104    ~Q ceq 7111    <Q cltq 7117   P.cnp 7123   1Pc1p 7124    +P. cpp 7125    <P cltp 7127    ~R cer 7128   R.cnr 7129    <R cltr 7135
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-13 1492  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-coll 4051  ax-sep 4054  ax-nul 4062  ax-pow 4106  ax-pr 4139  ax-un 4363  ax-setind 4460  ax-iinf 4510
This theorem depends on definitions:  df-bi 116  df-dc 821  df-3or 964  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ne 2310  df-ral 2422  df-rex 2423  df-reu 2424  df-rab 2426  df-v 2691  df-sbc 2914  df-csb 3008  df-dif 3078  df-un 3080  df-in 3082  df-ss 3089  df-nul 3369  df-pw 3517  df-sn 3538  df-pr 3539  df-op 3541  df-uni 3745  df-int 3780  df-iun 3823  df-br 3938  df-opab 3998  df-mpt 3999  df-tr 4035  df-eprel 4219  df-id 4223  df-po 4226  df-iso 4227  df-iord 4296  df-on 4298  df-suc 4301  df-iom 4513  df-xp 4553  df-rel 4554  df-cnv 4555  df-co 4556  df-dm 4557  df-rn 4558  df-res 4559  df-ima 4560  df-iota 5096  df-fun 5133  df-fn 5134  df-f 5135  df-f1 5136  df-fo 5137  df-f1o 5138  df-fv 5139  df-ov 5785  df-oprab 5786  df-mpo 5787  df-1st 6046  df-2nd 6047  df-recs 6210  df-irdg 6275  df-1o 6321  df-2o 6322  df-oadd 6325  df-omul 6326  df-er 6437  df-ec 6439  df-qs 6443  df-ni 7136  df-pli 7137  df-mi 7138  df-lti 7139  df-plpq 7176  df-mpq 7177  df-enq 7179  df-nqqs 7180  df-plqqs 7181  df-mqqs 7182  df-1nqqs 7183  df-rq 7184  df-ltnqqs 7185  df-enq0 7256  df-nq0 7257  df-0nq0 7258  df-plq0 7259  df-mq0 7260  df-inp 7298  df-i1p 7299  df-iplp 7300  df-iltp 7302  df-enr 7558  df-nr 7559  df-ltr 7562
This theorem is referenced by:  axarch  7723
  Copyright terms: Public domain W3C validator