ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  archsr Unicode version

Theorem archsr 7969
Description: For any signed real, there is an integer that is greater than it. This is also known as the "archimedean property". The expression  [ <. ( <. { l  |  l 
<Q  [ <. x ,  1o >. ]  ~Q  },  { u  |  [ <. x ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R is the embedding of the positive integer  x into the signed reals. (Contributed by Jim Kingdon, 23-Apr-2020.)
Assertion
Ref Expression
archsr  |-  ( A  e.  R.  ->  E. x  e.  N.  A  <R  [ <. (
<. { l  |  l 
<Q  [ <. x ,  1o >. ]  ~Q  } ,  { u  |  [ <. x ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  )
Distinct variable group:    A, l, u, x

Proof of Theorem archsr
Dummy variables  w  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-nr 7914 . 2  |-  R.  =  ( ( P.  X.  P. ) /.  ~R  )
2 breq1 4086 . . 3  |-  ( [
<. z ,  w >. ]  ~R  =  A  -> 
( [ <. z ,  w >. ]  ~R  <R  [
<. ( <. { l  |  l  <Q  [ <. x ,  1o >. ]  ~Q  } ,  { u  |  [ <. x ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  <->  A  <R  [
<. ( <. { l  |  l  <Q  [ <. x ,  1o >. ]  ~Q  } ,  { u  |  [ <. x ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  )
)
32rexbidv 2531 . 2  |-  ( [
<. z ,  w >. ]  ~R  =  A  -> 
( E. x  e. 
N.  [ <. z ,  w >. ]  ~R  <R  [
<. ( <. { l  |  l  <Q  [ <. x ,  1o >. ]  ~Q  } ,  { u  |  [ <. x ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  <->  E. x  e.  N.  A  <R  [ <. (
<. { l  |  l 
<Q  [ <. x ,  1o >. ]  ~Q  } ,  { u  |  [ <. x ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  )
)
4 1pr 7741 . . . . . . 7  |-  1P  e.  P.
5 addclpr 7724 . . . . . . 7  |-  ( ( z  e.  P.  /\  1P  e.  P. )  -> 
( z  +P.  1P )  e.  P. )
64, 5mpan2 425 . . . . . 6  |-  ( z  e.  P.  ->  (
z  +P.  1P )  e.  P. )
7 archpr 7830 . . . . . 6  |-  ( ( z  +P.  1P )  e.  P.  ->  E. x  e.  N.  ( z  +P. 
1P )  <P  <. { l  |  l  <Q  [ <. x ,  1o >. ]  ~Q  } ,  { u  |  [ <. x ,  1o >. ]  ~Q  <Q  u } >. )
86, 7syl 14 . . . . 5  |-  ( z  e.  P.  ->  E. x  e.  N.  ( z  +P. 
1P )  <P  <. { l  |  l  <Q  [ <. x ,  1o >. ]  ~Q  } ,  { u  |  [ <. x ,  1o >. ]  ~Q  <Q  u } >. )
98adantr 276 . . . 4  |-  ( ( z  e.  P.  /\  w  e.  P. )  ->  E. x  e.  N.  ( z  +P.  1P )  <P  <. { l  |  l  <Q  [ <. x ,  1o >. ]  ~Q  } ,  { u  |  [ <. x ,  1o >. ]  ~Q  <Q  u } >. )
10 nnprlu 7740 . . . . . . . . . 10  |-  ( x  e.  N.  ->  <. { l  |  l  <Q  [ <. x ,  1o >. ]  ~Q  } ,  { u  |  [ <. x ,  1o >. ]  ~Q  <Q  u } >.  e.  P. )
1110adantl 277 . . . . . . . . 9  |-  ( ( ( z  e.  P.  /\  w  e.  P. )  /\  x  e.  N. )  ->  <. { l  |  l  <Q  [ <. x ,  1o >. ]  ~Q  } ,  { u  |  [ <. x ,  1o >. ]  ~Q  <Q  u } >.  e.  P. )
12 addclpr 7724 . . . . . . . . 9  |-  ( (
<. { l  |  l 
<Q  [ <. x ,  1o >. ]  ~Q  } ,  { u  |  [ <. x ,  1o >. ]  ~Q  <Q  u } >.  e.  P.  /\  1P  e.  P. )  ->  ( <. { l  |  l 
<Q  [ <. x ,  1o >. ]  ~Q  } ,  { u  |  [ <. x ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P )  e. 
P. )
1311, 4, 12sylancl 413 . . . . . . . 8  |-  ( ( ( z  e.  P.  /\  w  e.  P. )  /\  x  e.  N. )  ->  ( <. { l  |  l  <Q  [ <. x ,  1o >. ]  ~Q  } ,  { u  |  [ <. x ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P )  e.  P. )
14 simplr 528 . . . . . . . 8  |-  ( ( ( z  e.  P.  /\  w  e.  P. )  /\  x  e.  N. )  ->  w  e.  P. )
15 ltaddpr 7784 . . . . . . . 8  |-  ( ( ( <. { l  |  l  <Q  [ <. x ,  1o >. ]  ~Q  } ,  { u  |  [ <. x ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P )  e. 
P.  /\  w  e.  P. )  ->  ( <. { l  |  l 
<Q  [ <. x ,  1o >. ]  ~Q  } ,  { u  |  [ <. x ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P )  <P 
( ( <. { l  |  l  <Q  [ <. x ,  1o >. ]  ~Q  } ,  { u  |  [ <. x ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P )  +P.  w ) )
1613, 14, 15syl2anc 411 . . . . . . 7  |-  ( ( ( z  e.  P.  /\  w  e.  P. )  /\  x  e.  N. )  ->  ( <. { l  |  l  <Q  [ <. x ,  1o >. ]  ~Q  } ,  { u  |  [ <. x ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P )  <P  ( ( <. { l  |  l  <Q  [ <. x ,  1o >. ]  ~Q  } ,  { u  |  [ <. x ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P )  +P.  w ) )
17 addcomprg 7765 . . . . . . . 8  |-  ( ( w  e.  P.  /\  ( <. { l  |  l  <Q  [ <. x ,  1o >. ]  ~Q  } ,  { u  |  [ <. x ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P )  e. 
P. )  ->  (
w  +P.  ( <. { l  |  l  <Q  [ <. x ,  1o >. ]  ~Q  } ,  { u  |  [ <. x ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) )  =  ( ( <. { l  |  l 
<Q  [ <. x ,  1o >. ]  ~Q  } ,  { u  |  [ <. x ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P )  +P.  w ) )
1814, 13, 17syl2anc 411 . . . . . . 7  |-  ( ( ( z  e.  P.  /\  w  e.  P. )  /\  x  e.  N. )  ->  ( w  +P.  ( <. { l  |  l  <Q  [ <. x ,  1o >. ]  ~Q  } ,  { u  |  [ <. x ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) )  =  ( ( <. { l  |  l 
<Q  [ <. x ,  1o >. ]  ~Q  } ,  { u  |  [ <. x ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P )  +P.  w ) )
1916, 18breqtrrd 4111 . . . . . 6  |-  ( ( ( z  e.  P.  /\  w  e.  P. )  /\  x  e.  N. )  ->  ( <. { l  |  l  <Q  [ <. x ,  1o >. ]  ~Q  } ,  { u  |  [ <. x ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P )  <P  ( w  +P.  ( <. { l  |  l 
<Q  [ <. x ,  1o >. ]  ~Q  } ,  { u  |  [ <. x ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ) )
20 ltaddpr 7784 . . . . . . . 8  |-  ( (
<. { l  |  l 
<Q  [ <. x ,  1o >. ]  ~Q  } ,  { u  |  [ <. x ,  1o >. ]  ~Q  <Q  u } >.  e.  P.  /\  1P  e.  P. )  ->  <. { l  |  l  <Q  [ <. x ,  1o >. ]  ~Q  } ,  { u  |  [ <. x ,  1o >. ]  ~Q  <Q  u } >.  <P  ( <. { l  |  l  <Q  [ <. x ,  1o >. ]  ~Q  } ,  { u  |  [ <. x ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P )
)
2111, 4, 20sylancl 413 . . . . . . 7  |-  ( ( ( z  e.  P.  /\  w  e.  P. )  /\  x  e.  N. )  ->  <. { l  |  l  <Q  [ <. x ,  1o >. ]  ~Q  } ,  { u  |  [ <. x ,  1o >. ]  ~Q  <Q  u } >.  <P  ( <. { l  |  l  <Q  [ <. x ,  1o >. ]  ~Q  } ,  { u  |  [ <. x ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P )
)
22 ltsopr 7783 . . . . . . . . 9  |-  <P  Or  P.
23 ltrelpr 7692 . . . . . . . . 9  |-  <P  C_  ( P.  X.  P. )
2422, 23sotri 5124 . . . . . . . 8  |-  ( ( ( z  +P.  1P )  <P  <. { l  |  l  <Q  [ <. x ,  1o >. ]  ~Q  } ,  { u  |  [ <. x ,  1o >. ]  ~Q  <Q  u } >.  /\  <. { l  |  l  <Q  [ <. x ,  1o >. ]  ~Q  } ,  { u  |  [ <. x ,  1o >. ]  ~Q  <Q  u } >.  <P  ( <. { l  |  l  <Q  [ <. x ,  1o >. ]  ~Q  } ,  { u  |  [ <. x ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P )
)  ->  ( z  +P.  1P )  <P  ( <. { l  |  l 
<Q  [ <. x ,  1o >. ]  ~Q  } ,  { u  |  [ <. x ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) )
2524expcom 116 . . . . . . 7  |-  ( <. { l  |  l 
<Q  [ <. x ,  1o >. ]  ~Q  } ,  { u  |  [ <. x ,  1o >. ]  ~Q  <Q  u } >.  <P  ( <. { l  |  l  <Q  [ <. x ,  1o >. ]  ~Q  } ,  { u  |  [ <. x ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P )  ->  ( ( z  +P. 
1P )  <P  <. { l  |  l  <Q  [ <. x ,  1o >. ]  ~Q  } ,  { u  |  [ <. x ,  1o >. ]  ~Q  <Q  u } >.  ->  ( z  +P.  1P )  <P  ( <. { l  |  l 
<Q  [ <. x ,  1o >. ]  ~Q  } ,  { u  |  [ <. x ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ) )
2621, 25syl 14 . . . . . 6  |-  ( ( ( z  e.  P.  /\  w  e.  P. )  /\  x  e.  N. )  ->  ( ( z  +P.  1P )  <P  <. { l  |  l 
<Q  [ <. x ,  1o >. ]  ~Q  } ,  { u  |  [ <. x ,  1o >. ]  ~Q  <Q  u } >.  ->  ( z  +P. 
1P )  <P  ( <. { l  |  l 
<Q  [ <. x ,  1o >. ]  ~Q  } ,  { u  |  [ <. x ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ) )
2722, 23sotri 5124 . . . . . . 7  |-  ( ( ( z  +P.  1P )  <P  ( <. { l  |  l  <Q  [ <. x ,  1o >. ]  ~Q  } ,  { u  |  [ <. x ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P )  /\  ( <. { l  |  l  <Q  [ <. x ,  1o >. ]  ~Q  } ,  { u  |  [ <. x ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P )  <P 
( w  +P.  ( <. { l  |  l 
<Q  [ <. x ,  1o >. ]  ~Q  } ,  { u  |  [ <. x ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ) )  ->  ( z  +P.  1P )  <P  (
w  +P.  ( <. { l  |  l  <Q  [ <. x ,  1o >. ]  ~Q  } ,  { u  |  [ <. x ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ) )
2827expcom 116 . . . . . 6  |-  ( (
<. { l  |  l 
<Q  [ <. x ,  1o >. ]  ~Q  } ,  { u  |  [ <. x ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P )  <P 
( w  +P.  ( <. { l  |  l 
<Q  [ <. x ,  1o >. ]  ~Q  } ,  { u  |  [ <. x ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) )  ->  ( ( z  +P.  1P )  <P 
( <. { l  |  l  <Q  [ <. x ,  1o >. ]  ~Q  } ,  { u  |  [ <. x ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P )  -> 
( z  +P.  1P )  <P  ( w  +P.  ( <. { l  |  l  <Q  [ <. x ,  1o >. ]  ~Q  } ,  { u  |  [ <. x ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ) ) )
2919, 26, 28sylsyld 58 . . . . 5  |-  ( ( ( z  e.  P.  /\  w  e.  P. )  /\  x  e.  N. )  ->  ( ( z  +P.  1P )  <P  <. { l  |  l 
<Q  [ <. x ,  1o >. ]  ~Q  } ,  { u  |  [ <. x ,  1o >. ]  ~Q  <Q  u } >.  ->  ( z  +P. 
1P )  <P  (
w  +P.  ( <. { l  |  l  <Q  [ <. x ,  1o >. ]  ~Q  } ,  { u  |  [ <. x ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ) ) )
3029reximdva 2632 . . . 4  |-  ( ( z  e.  P.  /\  w  e.  P. )  ->  ( E. x  e. 
N.  ( z  +P. 
1P )  <P  <. { l  |  l  <Q  [ <. x ,  1o >. ]  ~Q  } ,  { u  |  [ <. x ,  1o >. ]  ~Q  <Q  u } >.  ->  E. x  e.  N.  ( z  +P. 
1P )  <P  (
w  +P.  ( <. { l  |  l  <Q  [ <. x ,  1o >. ]  ~Q  } ,  { u  |  [ <. x ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ) ) )
319, 30mpd 13 . . 3  |-  ( ( z  e.  P.  /\  w  e.  P. )  ->  E. x  e.  N.  ( z  +P.  1P )  <P  ( w  +P.  ( <. { l  |  l  <Q  [ <. x ,  1o >. ]  ~Q  } ,  { u  |  [ <. x ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ) )
32 simpl 109 . . . . 5  |-  ( ( ( z  e.  P.  /\  w  e.  P. )  /\  x  e.  N. )  ->  ( z  e. 
P.  /\  w  e.  P. ) )
334a1i 9 . . . . 5  |-  ( ( ( z  e.  P.  /\  w  e.  P. )  /\  x  e.  N. )  ->  1P  e.  P. )
34 ltsrprg 7934 . . . . 5  |-  ( ( ( z  e.  P.  /\  w  e.  P. )  /\  ( ( <. { l  |  l  <Q  [ <. x ,  1o >. ]  ~Q  } ,  { u  |  [ <. x ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P )  e.  P.  /\  1P  e.  P. ) )  ->  ( [ <. z ,  w >. ]  ~R  <R  [ <. (
<. { l  |  l 
<Q  [ <. x ,  1o >. ]  ~Q  } ,  { u  |  [ <. x ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  <->  ( z  +P.  1P )  <P  (
w  +P.  ( <. { l  |  l  <Q  [ <. x ,  1o >. ]  ~Q  } ,  { u  |  [ <. x ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ) ) )
3532, 13, 33, 34syl12anc 1269 . . . 4  |-  ( ( ( z  e.  P.  /\  w  e.  P. )  /\  x  e.  N. )  ->  ( [ <. z ,  w >. ]  ~R  <R  [ <. ( <. { l  |  l  <Q  [ <. x ,  1o >. ]  ~Q  } ,  { u  |  [ <. x ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  <->  ( z  +P.  1P )  <P  (
w  +P.  ( <. { l  |  l  <Q  [ <. x ,  1o >. ]  ~Q  } ,  { u  |  [ <. x ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ) ) )
3635rexbidva 2527 . . 3  |-  ( ( z  e.  P.  /\  w  e.  P. )  ->  ( E. x  e. 
N.  [ <. z ,  w >. ]  ~R  <R  [
<. ( <. { l  |  l  <Q  [ <. x ,  1o >. ]  ~Q  } ,  { u  |  [ <. x ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  <->  E. x  e.  N.  ( z  +P. 
1P )  <P  (
w  +P.  ( <. { l  |  l  <Q  [ <. x ,  1o >. ]  ~Q  } ,  { u  |  [ <. x ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ) ) )
3731, 36mpbird 167 . 2  |-  ( ( z  e.  P.  /\  w  e.  P. )  ->  E. x  e.  N.  [
<. z ,  w >. ]  ~R  <R  [ <. ( <. { l  |  l 
<Q  [ <. x ,  1o >. ]  ~Q  } ,  { u  |  [ <. x ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  )
381, 3, 37ecoptocl 6769 1  |-  ( A  e.  R.  ->  E. x  e.  N.  A  <R  [ <. (
<. { l  |  l 
<Q  [ <. x ,  1o >. ]  ~Q  } ,  { u  |  [ <. x ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1395    e. wcel 2200   {cab 2215   E.wrex 2509   <.cop 3669   class class class wbr 4083  (class class class)co 6001   1oc1o 6555   [cec 6678   N.cnpi 7459    ~Q ceq 7466    <Q cltq 7472   P.cnp 7478   1Pc1p 7479    +P. cpp 7480    <P cltp 7482    ~R cer 7483   R.cnr 7484    <R cltr 7490
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4199  ax-sep 4202  ax-nul 4210  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-iinf 4680
This theorem depends on definitions:  df-bi 117  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-int 3924  df-iun 3967  df-br 4084  df-opab 4146  df-mpt 4147  df-tr 4183  df-eprel 4380  df-id 4384  df-po 4387  df-iso 4388  df-iord 4457  df-on 4459  df-suc 4462  df-iom 4683  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-f1 5323  df-fo 5324  df-f1o 5325  df-fv 5326  df-ov 6004  df-oprab 6005  df-mpo 6006  df-1st 6286  df-2nd 6287  df-recs 6451  df-irdg 6516  df-1o 6562  df-2o 6563  df-oadd 6566  df-omul 6567  df-er 6680  df-ec 6682  df-qs 6686  df-ni 7491  df-pli 7492  df-mi 7493  df-lti 7494  df-plpq 7531  df-mpq 7532  df-enq 7534  df-nqqs 7535  df-plqqs 7536  df-mqqs 7537  df-1nqqs 7538  df-rq 7539  df-ltnqqs 7540  df-enq0 7611  df-nq0 7612  df-0nq0 7613  df-plq0 7614  df-mq0 7615  df-inp 7653  df-i1p 7654  df-iplp 7655  df-iltp 7657  df-enr 7913  df-nr 7914  df-ltr 7917
This theorem is referenced by:  axarch  8078
  Copyright terms: Public domain W3C validator