ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  archsr Unicode version

Theorem archsr 7844
Description: For any signed real, there is an integer that is greater than it. This is also known as the "archimedean property". The expression  [ <. ( <. { l  |  l 
<Q  [ <. x ,  1o >. ]  ~Q  },  { u  |  [ <. x ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R is the embedding of the positive integer  x into the signed reals. (Contributed by Jim Kingdon, 23-Apr-2020.)
Assertion
Ref Expression
archsr  |-  ( A  e.  R.  ->  E. x  e.  N.  A  <R  [ <. (
<. { l  |  l 
<Q  [ <. x ,  1o >. ]  ~Q  } ,  { u  |  [ <. x ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  )
Distinct variable group:    A, l, u, x

Proof of Theorem archsr
Dummy variables  w  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-nr 7789 . 2  |-  R.  =  ( ( P.  X.  P. ) /.  ~R  )
2 breq1 4033 . . 3  |-  ( [
<. z ,  w >. ]  ~R  =  A  -> 
( [ <. z ,  w >. ]  ~R  <R  [
<. ( <. { l  |  l  <Q  [ <. x ,  1o >. ]  ~Q  } ,  { u  |  [ <. x ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  <->  A  <R  [
<. ( <. { l  |  l  <Q  [ <. x ,  1o >. ]  ~Q  } ,  { u  |  [ <. x ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  )
)
32rexbidv 2495 . 2  |-  ( [
<. z ,  w >. ]  ~R  =  A  -> 
( E. x  e. 
N.  [ <. z ,  w >. ]  ~R  <R  [
<. ( <. { l  |  l  <Q  [ <. x ,  1o >. ]  ~Q  } ,  { u  |  [ <. x ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  <->  E. x  e.  N.  A  <R  [ <. (
<. { l  |  l 
<Q  [ <. x ,  1o >. ]  ~Q  } ,  { u  |  [ <. x ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  )
)
4 1pr 7616 . . . . . . 7  |-  1P  e.  P.
5 addclpr 7599 . . . . . . 7  |-  ( ( z  e.  P.  /\  1P  e.  P. )  -> 
( z  +P.  1P )  e.  P. )
64, 5mpan2 425 . . . . . 6  |-  ( z  e.  P.  ->  (
z  +P.  1P )  e.  P. )
7 archpr 7705 . . . . . 6  |-  ( ( z  +P.  1P )  e.  P.  ->  E. x  e.  N.  ( z  +P. 
1P )  <P  <. { l  |  l  <Q  [ <. x ,  1o >. ]  ~Q  } ,  { u  |  [ <. x ,  1o >. ]  ~Q  <Q  u } >. )
86, 7syl 14 . . . . 5  |-  ( z  e.  P.  ->  E. x  e.  N.  ( z  +P. 
1P )  <P  <. { l  |  l  <Q  [ <. x ,  1o >. ]  ~Q  } ,  { u  |  [ <. x ,  1o >. ]  ~Q  <Q  u } >. )
98adantr 276 . . . 4  |-  ( ( z  e.  P.  /\  w  e.  P. )  ->  E. x  e.  N.  ( z  +P.  1P )  <P  <. { l  |  l  <Q  [ <. x ,  1o >. ]  ~Q  } ,  { u  |  [ <. x ,  1o >. ]  ~Q  <Q  u } >. )
10 nnprlu 7615 . . . . . . . . . 10  |-  ( x  e.  N.  ->  <. { l  |  l  <Q  [ <. x ,  1o >. ]  ~Q  } ,  { u  |  [ <. x ,  1o >. ]  ~Q  <Q  u } >.  e.  P. )
1110adantl 277 . . . . . . . . 9  |-  ( ( ( z  e.  P.  /\  w  e.  P. )  /\  x  e.  N. )  ->  <. { l  |  l  <Q  [ <. x ,  1o >. ]  ~Q  } ,  { u  |  [ <. x ,  1o >. ]  ~Q  <Q  u } >.  e.  P. )
12 addclpr 7599 . . . . . . . . 9  |-  ( (
<. { l  |  l 
<Q  [ <. x ,  1o >. ]  ~Q  } ,  { u  |  [ <. x ,  1o >. ]  ~Q  <Q  u } >.  e.  P.  /\  1P  e.  P. )  ->  ( <. { l  |  l 
<Q  [ <. x ,  1o >. ]  ~Q  } ,  { u  |  [ <. x ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P )  e. 
P. )
1311, 4, 12sylancl 413 . . . . . . . 8  |-  ( ( ( z  e.  P.  /\  w  e.  P. )  /\  x  e.  N. )  ->  ( <. { l  |  l  <Q  [ <. x ,  1o >. ]  ~Q  } ,  { u  |  [ <. x ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P )  e.  P. )
14 simplr 528 . . . . . . . 8  |-  ( ( ( z  e.  P.  /\  w  e.  P. )  /\  x  e.  N. )  ->  w  e.  P. )
15 ltaddpr 7659 . . . . . . . 8  |-  ( ( ( <. { l  |  l  <Q  [ <. x ,  1o >. ]  ~Q  } ,  { u  |  [ <. x ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P )  e. 
P.  /\  w  e.  P. )  ->  ( <. { l  |  l 
<Q  [ <. x ,  1o >. ]  ~Q  } ,  { u  |  [ <. x ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P )  <P 
( ( <. { l  |  l  <Q  [ <. x ,  1o >. ]  ~Q  } ,  { u  |  [ <. x ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P )  +P.  w ) )
1613, 14, 15syl2anc 411 . . . . . . 7  |-  ( ( ( z  e.  P.  /\  w  e.  P. )  /\  x  e.  N. )  ->  ( <. { l  |  l  <Q  [ <. x ,  1o >. ]  ~Q  } ,  { u  |  [ <. x ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P )  <P  ( ( <. { l  |  l  <Q  [ <. x ,  1o >. ]  ~Q  } ,  { u  |  [ <. x ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P )  +P.  w ) )
17 addcomprg 7640 . . . . . . . 8  |-  ( ( w  e.  P.  /\  ( <. { l  |  l  <Q  [ <. x ,  1o >. ]  ~Q  } ,  { u  |  [ <. x ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P )  e. 
P. )  ->  (
w  +P.  ( <. { l  |  l  <Q  [ <. x ,  1o >. ]  ~Q  } ,  { u  |  [ <. x ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) )  =  ( ( <. { l  |  l 
<Q  [ <. x ,  1o >. ]  ~Q  } ,  { u  |  [ <. x ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P )  +P.  w ) )
1814, 13, 17syl2anc 411 . . . . . . 7  |-  ( ( ( z  e.  P.  /\  w  e.  P. )  /\  x  e.  N. )  ->  ( w  +P.  ( <. { l  |  l  <Q  [ <. x ,  1o >. ]  ~Q  } ,  { u  |  [ <. x ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) )  =  ( ( <. { l  |  l 
<Q  [ <. x ,  1o >. ]  ~Q  } ,  { u  |  [ <. x ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P )  +P.  w ) )
1916, 18breqtrrd 4058 . . . . . 6  |-  ( ( ( z  e.  P.  /\  w  e.  P. )  /\  x  e.  N. )  ->  ( <. { l  |  l  <Q  [ <. x ,  1o >. ]  ~Q  } ,  { u  |  [ <. x ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P )  <P  ( w  +P.  ( <. { l  |  l 
<Q  [ <. x ,  1o >. ]  ~Q  } ,  { u  |  [ <. x ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ) )
20 ltaddpr 7659 . . . . . . . 8  |-  ( (
<. { l  |  l 
<Q  [ <. x ,  1o >. ]  ~Q  } ,  { u  |  [ <. x ,  1o >. ]  ~Q  <Q  u } >.  e.  P.  /\  1P  e.  P. )  ->  <. { l  |  l  <Q  [ <. x ,  1o >. ]  ~Q  } ,  { u  |  [ <. x ,  1o >. ]  ~Q  <Q  u } >.  <P  ( <. { l  |  l  <Q  [ <. x ,  1o >. ]  ~Q  } ,  { u  |  [ <. x ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P )
)
2111, 4, 20sylancl 413 . . . . . . 7  |-  ( ( ( z  e.  P.  /\  w  e.  P. )  /\  x  e.  N. )  ->  <. { l  |  l  <Q  [ <. x ,  1o >. ]  ~Q  } ,  { u  |  [ <. x ,  1o >. ]  ~Q  <Q  u } >.  <P  ( <. { l  |  l  <Q  [ <. x ,  1o >. ]  ~Q  } ,  { u  |  [ <. x ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P )
)
22 ltsopr 7658 . . . . . . . . 9  |-  <P  Or  P.
23 ltrelpr 7567 . . . . . . . . 9  |-  <P  C_  ( P.  X.  P. )
2422, 23sotri 5062 . . . . . . . 8  |-  ( ( ( z  +P.  1P )  <P  <. { l  |  l  <Q  [ <. x ,  1o >. ]  ~Q  } ,  { u  |  [ <. x ,  1o >. ]  ~Q  <Q  u } >.  /\  <. { l  |  l  <Q  [ <. x ,  1o >. ]  ~Q  } ,  { u  |  [ <. x ,  1o >. ]  ~Q  <Q  u } >.  <P  ( <. { l  |  l  <Q  [ <. x ,  1o >. ]  ~Q  } ,  { u  |  [ <. x ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P )
)  ->  ( z  +P.  1P )  <P  ( <. { l  |  l 
<Q  [ <. x ,  1o >. ]  ~Q  } ,  { u  |  [ <. x ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) )
2524expcom 116 . . . . . . 7  |-  ( <. { l  |  l 
<Q  [ <. x ,  1o >. ]  ~Q  } ,  { u  |  [ <. x ,  1o >. ]  ~Q  <Q  u } >.  <P  ( <. { l  |  l  <Q  [ <. x ,  1o >. ]  ~Q  } ,  { u  |  [ <. x ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P )  ->  ( ( z  +P. 
1P )  <P  <. { l  |  l  <Q  [ <. x ,  1o >. ]  ~Q  } ,  { u  |  [ <. x ,  1o >. ]  ~Q  <Q  u } >.  ->  ( z  +P.  1P )  <P  ( <. { l  |  l 
<Q  [ <. x ,  1o >. ]  ~Q  } ,  { u  |  [ <. x ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ) )
2621, 25syl 14 . . . . . 6  |-  ( ( ( z  e.  P.  /\  w  e.  P. )  /\  x  e.  N. )  ->  ( ( z  +P.  1P )  <P  <. { l  |  l 
<Q  [ <. x ,  1o >. ]  ~Q  } ,  { u  |  [ <. x ,  1o >. ]  ~Q  <Q  u } >.  ->  ( z  +P. 
1P )  <P  ( <. { l  |  l 
<Q  [ <. x ,  1o >. ]  ~Q  } ,  { u  |  [ <. x ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ) )
2722, 23sotri 5062 . . . . . . 7  |-  ( ( ( z  +P.  1P )  <P  ( <. { l  |  l  <Q  [ <. x ,  1o >. ]  ~Q  } ,  { u  |  [ <. x ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P )  /\  ( <. { l  |  l  <Q  [ <. x ,  1o >. ]  ~Q  } ,  { u  |  [ <. x ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P )  <P 
( w  +P.  ( <. { l  |  l 
<Q  [ <. x ,  1o >. ]  ~Q  } ,  { u  |  [ <. x ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ) )  ->  ( z  +P.  1P )  <P  (
w  +P.  ( <. { l  |  l  <Q  [ <. x ,  1o >. ]  ~Q  } ,  { u  |  [ <. x ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ) )
2827expcom 116 . . . . . 6  |-  ( (
<. { l  |  l 
<Q  [ <. x ,  1o >. ]  ~Q  } ,  { u  |  [ <. x ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P )  <P 
( w  +P.  ( <. { l  |  l 
<Q  [ <. x ,  1o >. ]  ~Q  } ,  { u  |  [ <. x ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) )  ->  ( ( z  +P.  1P )  <P 
( <. { l  |  l  <Q  [ <. x ,  1o >. ]  ~Q  } ,  { u  |  [ <. x ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P )  -> 
( z  +P.  1P )  <P  ( w  +P.  ( <. { l  |  l  <Q  [ <. x ,  1o >. ]  ~Q  } ,  { u  |  [ <. x ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ) ) )
2919, 26, 28sylsyld 58 . . . . 5  |-  ( ( ( z  e.  P.  /\  w  e.  P. )  /\  x  e.  N. )  ->  ( ( z  +P.  1P )  <P  <. { l  |  l 
<Q  [ <. x ,  1o >. ]  ~Q  } ,  { u  |  [ <. x ,  1o >. ]  ~Q  <Q  u } >.  ->  ( z  +P. 
1P )  <P  (
w  +P.  ( <. { l  |  l  <Q  [ <. x ,  1o >. ]  ~Q  } ,  { u  |  [ <. x ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ) ) )
3029reximdva 2596 . . . 4  |-  ( ( z  e.  P.  /\  w  e.  P. )  ->  ( E. x  e. 
N.  ( z  +P. 
1P )  <P  <. { l  |  l  <Q  [ <. x ,  1o >. ]  ~Q  } ,  { u  |  [ <. x ,  1o >. ]  ~Q  <Q  u } >.  ->  E. x  e.  N.  ( z  +P. 
1P )  <P  (
w  +P.  ( <. { l  |  l  <Q  [ <. x ,  1o >. ]  ~Q  } ,  { u  |  [ <. x ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ) ) )
319, 30mpd 13 . . 3  |-  ( ( z  e.  P.  /\  w  e.  P. )  ->  E. x  e.  N.  ( z  +P.  1P )  <P  ( w  +P.  ( <. { l  |  l  <Q  [ <. x ,  1o >. ]  ~Q  } ,  { u  |  [ <. x ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ) )
32 simpl 109 . . . . 5  |-  ( ( ( z  e.  P.  /\  w  e.  P. )  /\  x  e.  N. )  ->  ( z  e. 
P.  /\  w  e.  P. ) )
334a1i 9 . . . . 5  |-  ( ( ( z  e.  P.  /\  w  e.  P. )  /\  x  e.  N. )  ->  1P  e.  P. )
34 ltsrprg 7809 . . . . 5  |-  ( ( ( z  e.  P.  /\  w  e.  P. )  /\  ( ( <. { l  |  l  <Q  [ <. x ,  1o >. ]  ~Q  } ,  { u  |  [ <. x ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P )  e.  P.  /\  1P  e.  P. ) )  ->  ( [ <. z ,  w >. ]  ~R  <R  [ <. (
<. { l  |  l 
<Q  [ <. x ,  1o >. ]  ~Q  } ,  { u  |  [ <. x ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  <->  ( z  +P.  1P )  <P  (
w  +P.  ( <. { l  |  l  <Q  [ <. x ,  1o >. ]  ~Q  } ,  { u  |  [ <. x ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ) ) )
3532, 13, 33, 34syl12anc 1247 . . . 4  |-  ( ( ( z  e.  P.  /\  w  e.  P. )  /\  x  e.  N. )  ->  ( [ <. z ,  w >. ]  ~R  <R  [ <. ( <. { l  |  l  <Q  [ <. x ,  1o >. ]  ~Q  } ,  { u  |  [ <. x ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  <->  ( z  +P.  1P )  <P  (
w  +P.  ( <. { l  |  l  <Q  [ <. x ,  1o >. ]  ~Q  } ,  { u  |  [ <. x ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ) ) )
3635rexbidva 2491 . . 3  |-  ( ( z  e.  P.  /\  w  e.  P. )  ->  ( E. x  e. 
N.  [ <. z ,  w >. ]  ~R  <R  [
<. ( <. { l  |  l  <Q  [ <. x ,  1o >. ]  ~Q  } ,  { u  |  [ <. x ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  <->  E. x  e.  N.  ( z  +P. 
1P )  <P  (
w  +P.  ( <. { l  |  l  <Q  [ <. x ,  1o >. ]  ~Q  } ,  { u  |  [ <. x ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ) ) )
3731, 36mpbird 167 . 2  |-  ( ( z  e.  P.  /\  w  e.  P. )  ->  E. x  e.  N.  [
<. z ,  w >. ]  ~R  <R  [ <. ( <. { l  |  l 
<Q  [ <. x ,  1o >. ]  ~Q  } ,  { u  |  [ <. x ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  )
381, 3, 37ecoptocl 6678 1  |-  ( A  e.  R.  ->  E. x  e.  N.  A  <R  [ <. (
<. { l  |  l 
<Q  [ <. x ,  1o >. ]  ~Q  } ,  { u  |  [ <. x ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1364    e. wcel 2164   {cab 2179   E.wrex 2473   <.cop 3622   class class class wbr 4030  (class class class)co 5919   1oc1o 6464   [cec 6587   N.cnpi 7334    ~Q ceq 7341    <Q cltq 7347   P.cnp 7353   1Pc1p 7354    +P. cpp 7355    <P cltp 7357    ~R cer 7358   R.cnr 7359    <R cltr 7365
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4145  ax-sep 4148  ax-nul 4156  ax-pow 4204  ax-pr 4239  ax-un 4465  ax-setind 4570  ax-iinf 4621
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-ral 2477  df-rex 2478  df-reu 2479  df-rab 2481  df-v 2762  df-sbc 2987  df-csb 3082  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-nul 3448  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-int 3872  df-iun 3915  df-br 4031  df-opab 4092  df-mpt 4093  df-tr 4129  df-eprel 4321  df-id 4325  df-po 4328  df-iso 4329  df-iord 4398  df-on 4400  df-suc 4403  df-iom 4624  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-rn 4671  df-res 4672  df-ima 4673  df-iota 5216  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-ov 5922  df-oprab 5923  df-mpo 5924  df-1st 6195  df-2nd 6196  df-recs 6360  df-irdg 6425  df-1o 6471  df-2o 6472  df-oadd 6475  df-omul 6476  df-er 6589  df-ec 6591  df-qs 6595  df-ni 7366  df-pli 7367  df-mi 7368  df-lti 7369  df-plpq 7406  df-mpq 7407  df-enq 7409  df-nqqs 7410  df-plqqs 7411  df-mqqs 7412  df-1nqqs 7413  df-rq 7414  df-ltnqqs 7415  df-enq0 7486  df-nq0 7487  df-0nq0 7488  df-plq0 7489  df-mq0 7490  df-inp 7528  df-i1p 7529  df-iplp 7530  df-iltp 7532  df-enr 7788  df-nr 7789  df-ltr 7792
This theorem is referenced by:  axarch  7953
  Copyright terms: Public domain W3C validator