ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rspc2vd Unicode version

Theorem rspc2vd 3161
Description: Deduction version of 2-variable restricted specialization, using implicit substitution. Notice that the class  D for the second set variable  y may depend on the first set variable  x. (Contributed by AV, 29-Mar-2021.)
Hypotheses
Ref Expression
rspc2vd.a  |-  ( x  =  A  ->  ( th 
<->  ch ) )
rspc2vd.b  |-  ( y  =  B  ->  ( ch 
<->  ps ) )
rspc2vd.c  |-  ( ph  ->  A  e.  C )
rspc2vd.d  |-  ( (
ph  /\  x  =  A )  ->  D  =  E )
rspc2vd.e  |-  ( ph  ->  B  e.  E )
Assertion
Ref Expression
rspc2vd  |-  ( ph  ->  ( A. x  e.  C  A. y  e.  D  th  ->  ps ) )
Distinct variable groups:    x, A, y   
y, B    x, C    y, D    x, E    ph, x    ch, x    ps, y
Allowed substitution hints:    ph( y)    ps( x)    ch( y)    th( x, y)    B( x)    C( y)    D( x)    E( y)

Proof of Theorem rspc2vd
StepHypRef Expression
1 rspc2vd.e . . 3  |-  ( ph  ->  B  e.  E )
2 rspc2vd.c . . . 4  |-  ( ph  ->  A  e.  C )
3 rspc2vd.d . . . 4  |-  ( (
ph  /\  x  =  A )  ->  D  =  E )
42, 3csbied 3139 . . 3  |-  ( ph  ->  [_ A  /  x ]_ D  =  E
)
51, 4eleqtrrd 2284 . 2  |-  ( ph  ->  B  e.  [_ A  /  x ]_ D )
6 nfcsb1v 3125 . . . . 5  |-  F/_ x [_ A  /  x ]_ D
7 nfv 1550 . . . . 5  |-  F/ x ch
86, 7nfralw 2542 . . . 4  |-  F/ x A. y  e.  [_  A  /  x ]_ D ch
9 csbeq1a 3101 . . . . 5  |-  ( x  =  A  ->  D  =  [_ A  /  x ]_ D )
10 rspc2vd.a . . . . 5  |-  ( x  =  A  ->  ( th 
<->  ch ) )
119, 10raleqbidv 2717 . . . 4  |-  ( x  =  A  ->  ( A. y  e.  D  th 
<-> 
A. y  e.  [_  A  /  x ]_ D ch ) )
128, 11rspc 2870 . . 3  |-  ( A  e.  C  ->  ( A. x  e.  C  A. y  e.  D  th  ->  A. y  e.  [_  A  /  x ]_ D ch ) )
132, 12syl 14 . 2  |-  ( ph  ->  ( A. x  e.  C  A. y  e.  D  th  ->  A. y  e.  [_  A  /  x ]_ D ch ) )
14 rspc2vd.b . . 3  |-  ( y  =  B  ->  ( ch 
<->  ps ) )
1514rspcv 2872 . 2  |-  ( B  e.  [_ A  /  x ]_ D  ->  ( A. y  e.  [_  A  /  x ]_ D ch  ->  ps ) )
165, 13, 15sylsyld 58 1  |-  ( ph  ->  ( A. x  e.  C  A. y  e.  D  th  ->  ps ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1372    e. wcel 2175   A.wral 2483   [_csb 3092
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-ext 2186
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1375  df-nf 1483  df-sb 1785  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ral 2488  df-v 2773  df-sbc 2998  df-csb 3093
This theorem is referenced by:  insubm  13288
  Copyright terms: Public domain W3C validator