| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > rspc2vd | Unicode version | ||
| Description: Deduction version of
2-variable restricted specialization, using
implicit substitution. Notice that the class |
| Ref | Expression |
|---|---|
| rspc2vd.a |
|
| rspc2vd.b |
|
| rspc2vd.c |
|
| rspc2vd.d |
|
| rspc2vd.e |
|
| Ref | Expression |
|---|---|
| rspc2vd |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rspc2vd.e |
. . 3
| |
| 2 | rspc2vd.c |
. . . 4
| |
| 3 | rspc2vd.d |
. . . 4
| |
| 4 | 2, 3 | csbied 3140 |
. . 3
|
| 5 | 1, 4 | eleqtrrd 2285 |
. 2
|
| 6 | nfcsb1v 3126 |
. . . . 5
| |
| 7 | nfv 1551 |
. . . . 5
| |
| 8 | 6, 7 | nfralw 2543 |
. . . 4
|
| 9 | csbeq1a 3102 |
. . . . 5
| |
| 10 | rspc2vd.a |
. . . . 5
| |
| 11 | 9, 10 | raleqbidv 2718 |
. . . 4
|
| 12 | 8, 11 | rspc 2871 |
. . 3
|
| 13 | 2, 12 | syl 14 |
. 2
|
| 14 | rspc2vd.b |
. . 3
| |
| 15 | 14 | rspcv 2873 |
. 2
|
| 16 | 5, 13, 15 | sylsyld 58 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-ext 2187 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ral 2489 df-v 2774 df-sbc 2999 df-csb 3094 |
| This theorem is referenced by: insubm 13317 |
| Copyright terms: Public domain | W3C validator |