Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > rspc2vd | Unicode version |
Description: Deduction version of 2-variable restricted specialization, using implicit substitution. Notice that the class for the second set variable may depend on the first set variable . (Contributed by AV, 29-Mar-2021.) |
Ref | Expression |
---|---|
rspc2vd.a | |
rspc2vd.b | |
rspc2vd.c | |
rspc2vd.d | |
rspc2vd.e |
Ref | Expression |
---|---|
rspc2vd |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rspc2vd.e | . . 3 | |
2 | rspc2vd.c | . . . 4 | |
3 | rspc2vd.d | . . . 4 | |
4 | 2, 3 | csbied 3101 | . . 3 |
5 | 1, 4 | eleqtrrd 2255 | . 2 |
6 | nfcsb1v 3088 | . . . . 5 | |
7 | nfv 1526 | . . . . 5 | |
8 | 6, 7 | nfralw 2512 | . . . 4 |
9 | csbeq1a 3064 | . . . . 5 | |
10 | rspc2vd.a | . . . . 5 | |
11 | 9, 10 | raleqbidv 2682 | . . . 4 |
12 | 8, 11 | rspc 2833 | . . 3 |
13 | 2, 12 | syl 14 | . 2 |
14 | rspc2vd.b | . . 3 | |
15 | 14 | rspcv 2835 | . 2 |
16 | 5, 13, 15 | sylsyld 58 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 104 wb 105 wceq 1353 wcel 2146 wral 2453 csb 3055 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1445 ax-7 1446 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-8 1502 ax-10 1503 ax-11 1504 ax-i12 1505 ax-bndl 1507 ax-4 1508 ax-17 1524 ax-i9 1528 ax-ial 1532 ax-i5r 1533 ax-ext 2157 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-nf 1459 df-sb 1761 df-clab 2162 df-cleq 2168 df-clel 2171 df-nfc 2306 df-ral 2458 df-v 2737 df-sbc 2961 df-csb 3056 |
This theorem is referenced by: insubm 12734 |
Copyright terms: Public domain | W3C validator |