Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > rspc2vd | Unicode version |
Description: Deduction version of 2-variable restricted specialization, using implicit substitution. Notice that the class for the second set variable may depend on the first set variable . (Contributed by AV, 29-Mar-2021.) |
Ref | Expression |
---|---|
rspc2vd.a | |
rspc2vd.b | |
rspc2vd.c | |
rspc2vd.d | |
rspc2vd.e |
Ref | Expression |
---|---|
rspc2vd |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rspc2vd.e | . . 3 | |
2 | rspc2vd.c | . . . 4 | |
3 | rspc2vd.d | . . . 4 | |
4 | 2, 3 | csbied 3095 | . . 3 |
5 | 1, 4 | eleqtrrd 2250 | . 2 |
6 | nfcsb1v 3082 | . . . . 5 | |
7 | nfv 1521 | . . . . 5 | |
8 | 6, 7 | nfralw 2507 | . . . 4 |
9 | csbeq1a 3058 | . . . . 5 | |
10 | rspc2vd.a | . . . . 5 | |
11 | 9, 10 | raleqbidv 2677 | . . . 4 |
12 | 8, 11 | rspc 2828 | . . 3 |
13 | 2, 12 | syl 14 | . 2 |
14 | rspc2vd.b | . . 3 | |
15 | 14 | rspcv 2830 | . 2 |
16 | 5, 13, 15 | sylsyld 58 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 wceq 1348 wcel 2141 wral 2448 csb 3049 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-v 2732 df-sbc 2956 df-csb 3050 |
This theorem is referenced by: insubm 12703 |
Copyright terms: Public domain | W3C validator |