| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > rspc2vd | Unicode version | ||
| Description: Deduction version of
2-variable restricted specialization, using
implicit substitution. Notice that the class |
| Ref | Expression |
|---|---|
| rspc2vd.a |
|
| rspc2vd.b |
|
| rspc2vd.c |
|
| rspc2vd.d |
|
| rspc2vd.e |
|
| Ref | Expression |
|---|---|
| rspc2vd |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rspc2vd.e |
. . 3
| |
| 2 | rspc2vd.c |
. . . 4
| |
| 3 | rspc2vd.d |
. . . 4
| |
| 4 | 2, 3 | csbied 3139 |
. . 3
|
| 5 | 1, 4 | eleqtrrd 2284 |
. 2
|
| 6 | nfcsb1v 3125 |
. . . . 5
| |
| 7 | nfv 1550 |
. . . . 5
| |
| 8 | 6, 7 | nfralw 2542 |
. . . 4
|
| 9 | csbeq1a 3101 |
. . . . 5
| |
| 10 | rspc2vd.a |
. . . . 5
| |
| 11 | 9, 10 | raleqbidv 2717 |
. . . 4
|
| 12 | 8, 11 | rspc 2870 |
. . 3
|
| 13 | 2, 12 | syl 14 |
. 2
|
| 14 | rspc2vd.b |
. . 3
| |
| 15 | 14 | rspcv 2872 |
. 2
|
| 16 | 5, 13, 15 | sylsyld 58 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-ext 2186 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1375 df-nf 1483 df-sb 1785 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ral 2488 df-v 2773 df-sbc 2998 df-csb 3093 |
| This theorem is referenced by: insubm 13288 |
| Copyright terms: Public domain | W3C validator |