ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ltexprlemrl Unicode version

Theorem ltexprlemrl 7670
Description: Lemma for ltexpri 7673. Reverse direction of our result for lower cuts. (Contributed by Jim Kingdon, 17-Dec-2019.)
Hypothesis
Ref Expression
ltexprlem.1  |-  C  = 
<. { x  e.  Q.  |  E. y ( y  e.  ( 2nd `  A
)  /\  ( y  +Q  x )  e.  ( 1st `  B ) ) } ,  {
x  e.  Q.  |  E. y ( y  e.  ( 1st `  A
)  /\  ( y  +Q  x )  e.  ( 2nd `  B ) ) } >.
Assertion
Ref Expression
ltexprlemrl  |-  ( A 
<P  B  ->  ( 1st `  B )  C_  ( 1st `  ( A  +P.  C ) ) )
Distinct variable groups:    x, y, A   
x, B, y    x, C, y

Proof of Theorem ltexprlemrl
Dummy variables  z  w  u  v  f  g  h  s are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ltrelpr 7565 . . . . . . . 8  |-  <P  C_  ( P.  X.  P. )
21brel 4711 . . . . . . 7  |-  ( A 
<P  B  ->  ( A  e.  P.  /\  B  e.  P. ) )
32simprd 114 . . . . . 6  |-  ( A 
<P  B  ->  B  e. 
P. )
4 prop 7535 . . . . . 6  |-  ( B  e.  P.  ->  <. ( 1st `  B ) ,  ( 2nd `  B
) >.  e.  P. )
53, 4syl 14 . . . . 5  |-  ( A 
<P  B  ->  <. ( 1st `  B ) ,  ( 2nd `  B
) >.  e.  P. )
6 prnmaddl 7550 . . . . 5  |-  ( (
<. ( 1st `  B
) ,  ( 2nd `  B ) >.  e.  P.  /\  w  e.  ( 1st `  B ) )  ->  E. v  e.  Q.  ( w  +Q  v
)  e.  ( 1st `  B ) )
75, 6sylan 283 . . . 4  |-  ( ( A  <P  B  /\  w  e.  ( 1st `  B ) )  ->  E. v  e.  Q.  ( w  +Q  v
)  e.  ( 1st `  B ) )
82simpld 112 . . . . . . . 8  |-  ( A 
<P  B  ->  A  e. 
P. )
9 prop 7535 . . . . . . . 8  |-  ( A  e.  P.  ->  <. ( 1st `  A ) ,  ( 2nd `  A
) >.  e.  P. )
108, 9syl 14 . . . . . . 7  |-  ( A 
<P  B  ->  <. ( 1st `  A ) ,  ( 2nd `  A
) >.  e.  P. )
11 prarloc 7563 . . . . . . 7  |-  ( (
<. ( 1st `  A
) ,  ( 2nd `  A ) >.  e.  P.  /\  v  e.  Q. )  ->  E. z  e.  ( 1st `  A ) E. u  e.  ( 2nd `  A ) u  <Q  ( z  +Q  v ) )
1210, 11sylan 283 . . . . . 6  |-  ( ( A  <P  B  /\  v  e.  Q. )  ->  E. z  e.  ( 1st `  A ) E. u  e.  ( 2nd `  A ) u  <Q  ( z  +Q  v ) )
1312ad2ant2r 509 . . . . 5  |-  ( ( ( A  <P  B  /\  w  e.  ( 1st `  B ) )  /\  ( v  e.  Q.  /\  ( w  +Q  v
)  e.  ( 1st `  B ) ) )  ->  E. z  e.  ( 1st `  A ) E. u  e.  ( 2nd `  A ) u  <Q  ( z  +Q  v ) )
14 simplll 533 . . . . . . . . . . 11  |-  ( ( ( ( A  <P  B  /\  w  e.  ( 1st `  B ) )  /\  ( v  e.  Q.  /\  (
w  +Q  v )  e.  ( 1st `  B
) ) )  /\  ( z  e.  ( 1st `  A )  /\  u  e.  ( 2nd `  A ) ) )  ->  A  <P  B )
1514adantr 276 . . . . . . . . . 10  |-  ( ( ( ( ( A 
<P  B  /\  w  e.  ( 1st `  B
) )  /\  (
v  e.  Q.  /\  ( w  +Q  v
)  e.  ( 1st `  B ) ) )  /\  ( z  e.  ( 1st `  A
)  /\  u  e.  ( 2nd `  A ) ) )  /\  u  <Q  ( z  +Q  v
) )  ->  A  <P  B )
16 simplrl 535 . . . . . . . . . 10  |-  ( ( ( ( ( A 
<P  B  /\  w  e.  ( 1st `  B
) )  /\  (
v  e.  Q.  /\  ( w  +Q  v
)  e.  ( 1st `  B ) ) )  /\  ( z  e.  ( 1st `  A
)  /\  u  e.  ( 2nd `  A ) ) )  /\  u  <Q  ( z  +Q  v
) )  ->  z  e.  ( 1st `  A
) )
17 elprnql 7541 . . . . . . . . . . 11  |-  ( (
<. ( 1st `  A
) ,  ( 2nd `  A ) >.  e.  P.  /\  z  e.  ( 1st `  A ) )  -> 
z  e.  Q. )
1810, 17sylan 283 . . . . . . . . . 10  |-  ( ( A  <P  B  /\  z  e.  ( 1st `  A ) )  -> 
z  e.  Q. )
1915, 16, 18syl2anc 411 . . . . . . . . 9  |-  ( ( ( ( ( A 
<P  B  /\  w  e.  ( 1st `  B
) )  /\  (
v  e.  Q.  /\  ( w  +Q  v
)  e.  ( 1st `  B ) ) )  /\  ( z  e.  ( 1st `  A
)  /\  u  e.  ( 2nd `  A ) ) )  /\  u  <Q  ( z  +Q  v
) )  ->  z  e.  Q. )
20 elprnql 7541 . . . . . . . . . . 11  |-  ( (
<. ( 1st `  B
) ,  ( 2nd `  B ) >.  e.  P.  /\  w  e.  ( 1st `  B ) )  ->  w  e.  Q. )
215, 20sylan 283 . . . . . . . . . 10  |-  ( ( A  <P  B  /\  w  e.  ( 1st `  B ) )  ->  w  e.  Q. )
2221ad3antrrr 492 . . . . . . . . 9  |-  ( ( ( ( ( A 
<P  B  /\  w  e.  ( 1st `  B
) )  /\  (
v  e.  Q.  /\  ( w  +Q  v
)  e.  ( 1st `  B ) ) )  /\  ( z  e.  ( 1st `  A
)  /\  u  e.  ( 2nd `  A ) ) )  /\  u  <Q  ( z  +Q  v
) )  ->  w  e.  Q. )
23 nqtri3or 7456 . . . . . . . . 9  |-  ( ( z  e.  Q.  /\  w  e.  Q. )  ->  ( z  <Q  w  \/  z  =  w  \/  w  <Q  z ) )
2419, 22, 23syl2anc 411 . . . . . . . 8  |-  ( ( ( ( ( A 
<P  B  /\  w  e.  ( 1st `  B
) )  /\  (
v  e.  Q.  /\  ( w  +Q  v
)  e.  ( 1st `  B ) ) )  /\  ( z  e.  ( 1st `  A
)  /\  u  e.  ( 2nd `  A ) ) )  /\  u  <Q  ( z  +Q  v
) )  ->  (
z  <Q  w  \/  z  =  w  \/  w  <Q  z ) )
25 ltexnqq 7468 . . . . . . . . . . . . 13  |-  ( ( z  e.  Q.  /\  w  e.  Q. )  ->  ( z  <Q  w  <->  E. s  e.  Q.  (
z  +Q  s )  =  w ) )
2619, 22, 25syl2anc 411 . . . . . . . . . . . 12  |-  ( ( ( ( ( A 
<P  B  /\  w  e.  ( 1st `  B
) )  /\  (
v  e.  Q.  /\  ( w  +Q  v
)  e.  ( 1st `  B ) ) )  /\  ( z  e.  ( 1st `  A
)  /\  u  e.  ( 2nd `  A ) ) )  /\  u  <Q  ( z  +Q  v
) )  ->  (
z  <Q  w  <->  E. s  e.  Q.  ( z  +Q  s )  =  w ) )
2726biimpa 296 . . . . . . . . . . 11  |-  ( ( ( ( ( ( A  <P  B  /\  w  e.  ( 1st `  B ) )  /\  ( v  e.  Q.  /\  ( w  +Q  v
)  e.  ( 1st `  B ) ) )  /\  ( z  e.  ( 1st `  A
)  /\  u  e.  ( 2nd `  A ) ) )  /\  u  <Q  ( z  +Q  v
) )  /\  z  <Q  w )  ->  E. s  e.  Q.  ( z  +Q  s )  =  w )
28 simprr 531 . . . . . . . . . . . 12  |-  ( ( ( ( ( ( ( A  <P  B  /\  w  e.  ( 1st `  B ) )  /\  ( v  e.  Q.  /\  ( w  +Q  v
)  e.  ( 1st `  B ) ) )  /\  ( z  e.  ( 1st `  A
)  /\  u  e.  ( 2nd `  A ) ) )  /\  u  <Q  ( z  +Q  v
) )  /\  z  <Q  w )  /\  (
s  e.  Q.  /\  ( z  +Q  s
)  =  w ) )  ->  ( z  +Q  s )  =  w )
2916ad2antrr 488 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ( ( A  <P  B  /\  w  e.  ( 1st `  B ) )  /\  ( v  e.  Q.  /\  ( w  +Q  v
)  e.  ( 1st `  B ) ) )  /\  ( z  e.  ( 1st `  A
)  /\  u  e.  ( 2nd `  A ) ) )  /\  u  <Q  ( z  +Q  v
) )  /\  z  <Q  w )  /\  (
s  e.  Q.  /\  ( z  +Q  s
)  =  w ) )  ->  z  e.  ( 1st `  A ) )
30 simprl 529 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ( ( A  <P  B  /\  w  e.  ( 1st `  B ) )  /\  ( v  e.  Q.  /\  ( w  +Q  v
)  e.  ( 1st `  B ) ) )  /\  ( z  e.  ( 1st `  A
)  /\  u  e.  ( 2nd `  A ) ) )  /\  u  <Q  ( z  +Q  v
) )  /\  z  <Q  w )  /\  (
s  e.  Q.  /\  ( z  +Q  s
)  =  w ) )  ->  s  e.  Q. )
31 simpr 110 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( A 
<P  B  /\  w  e.  ( 1st `  B
) )  /\  (
v  e.  Q.  /\  ( w  +Q  v
)  e.  ( 1st `  B ) ) )  /\  ( z  e.  ( 1st `  A
)  /\  u  e.  ( 2nd `  A ) ) )  /\  u  <Q  ( z  +Q  v
) )  ->  u  <Q  ( z  +Q  v
) )
32 simplrr 536 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ( A 
<P  B  /\  w  e.  ( 1st `  B
) )  /\  (
v  e.  Q.  /\  ( w  +Q  v
)  e.  ( 1st `  B ) ) )  /\  ( z  e.  ( 1st `  A
)  /\  u  e.  ( 2nd `  A ) ) )  /\  u  <Q  ( z  +Q  v
) )  ->  u  e.  ( 2nd `  A
) )
33 prcunqu 7545 . . . . . . . . . . . . . . . . . . 19  |-  ( (
<. ( 1st `  A
) ,  ( 2nd `  A ) >.  e.  P.  /\  u  e.  ( 2nd `  A ) )  -> 
( u  <Q  (
z  +Q  v )  ->  ( z  +Q  v )  e.  ( 2nd `  A ) ) )
3410, 33sylan 283 . . . . . . . . . . . . . . . . . 18  |-  ( ( A  <P  B  /\  u  e.  ( 2nd `  A ) )  -> 
( u  <Q  (
z  +Q  v )  ->  ( z  +Q  v )  e.  ( 2nd `  A ) ) )
3515, 32, 34syl2anc 411 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( A 
<P  B  /\  w  e.  ( 1st `  B
) )  /\  (
v  e.  Q.  /\  ( w  +Q  v
)  e.  ( 1st `  B ) ) )  /\  ( z  e.  ( 1st `  A
)  /\  u  e.  ( 2nd `  A ) ) )  /\  u  <Q  ( z  +Q  v
) )  ->  (
u  <Q  ( z  +Q  v )  ->  (
z  +Q  v )  e.  ( 2nd `  A
) ) )
3631, 35mpd 13 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( A 
<P  B  /\  w  e.  ( 1st `  B
) )  /\  (
v  e.  Q.  /\  ( w  +Q  v
)  e.  ( 1st `  B ) ) )  /\  ( z  e.  ( 1st `  A
)  /\  u  e.  ( 2nd `  A ) ) )  /\  u  <Q  ( z  +Q  v
) )  ->  (
z  +Q  v )  e.  ( 2nd `  A
) )
3736ad2antrr 488 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ( ( A  <P  B  /\  w  e.  ( 1st `  B ) )  /\  ( v  e.  Q.  /\  ( w  +Q  v
)  e.  ( 1st `  B ) ) )  /\  ( z  e.  ( 1st `  A
)  /\  u  e.  ( 2nd `  A ) ) )  /\  u  <Q  ( z  +Q  v
) )  /\  z  <Q  w )  /\  (
s  e.  Q.  /\  ( z  +Q  s
)  =  w ) )  ->  ( z  +Q  v )  e.  ( 2nd `  A ) )
3819ad2antrr 488 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( ( ( A  <P  B  /\  w  e.  ( 1st `  B ) )  /\  ( v  e.  Q.  /\  ( w  +Q  v
)  e.  ( 1st `  B ) ) )  /\  ( z  e.  ( 1st `  A
)  /\  u  e.  ( 2nd `  A ) ) )  /\  u  <Q  ( z  +Q  v
) )  /\  z  <Q  w )  /\  (
s  e.  Q.  /\  ( z  +Q  s
)  =  w ) )  ->  z  e.  Q. )
39 simplrl 535 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( A  <P  B  /\  w  e.  ( 1st `  B ) )  /\  ( v  e.  Q.  /\  (
w  +Q  v )  e.  ( 1st `  B
) ) )  /\  ( z  e.  ( 1st `  A )  /\  u  e.  ( 2nd `  A ) ) )  ->  v  e.  Q. )
4039ad3antrrr 492 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( ( ( A  <P  B  /\  w  e.  ( 1st `  B ) )  /\  ( v  e.  Q.  /\  ( w  +Q  v
)  e.  ( 1st `  B ) ) )  /\  ( z  e.  ( 1st `  A
)  /\  u  e.  ( 2nd `  A ) ) )  /\  u  <Q  ( z  +Q  v
) )  /\  z  <Q  w )  /\  (
s  e.  Q.  /\  ( z  +Q  s
)  =  w ) )  ->  v  e.  Q. )
41 addcomnqg 7441 . . . . . . . . . . . . . . . . . 18  |-  ( ( f  e.  Q.  /\  g  e.  Q. )  ->  ( f  +Q  g
)  =  ( g  +Q  f ) )
4241adantl 277 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( ( ( ( A  <P  B  /\  w  e.  ( 1st `  B ) )  /\  ( v  e.  Q.  /\  (
w  +Q  v )  e.  ( 1st `  B
) ) )  /\  ( z  e.  ( 1st `  A )  /\  u  e.  ( 2nd `  A ) ) )  /\  u  <Q  ( z  +Q  v
) )  /\  z  <Q  w )  /\  (
s  e.  Q.  /\  ( z  +Q  s
)  =  w ) )  /\  ( f  e.  Q.  /\  g  e.  Q. ) )  -> 
( f  +Q  g
)  =  ( g  +Q  f ) )
43 addassnqg 7442 . . . . . . . . . . . . . . . . . 18  |-  ( ( f  e.  Q.  /\  g  e.  Q.  /\  h  e.  Q. )  ->  (
( f  +Q  g
)  +Q  h )  =  ( f  +Q  ( g  +Q  h
) ) )
4443adantl 277 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( ( ( ( A  <P  B  /\  w  e.  ( 1st `  B ) )  /\  ( v  e.  Q.  /\  (
w  +Q  v )  e.  ( 1st `  B
) ) )  /\  ( z  e.  ( 1st `  A )  /\  u  e.  ( 2nd `  A ) ) )  /\  u  <Q  ( z  +Q  v
) )  /\  z  <Q  w )  /\  (
s  e.  Q.  /\  ( z  +Q  s
)  =  w ) )  /\  ( f  e.  Q.  /\  g  e.  Q.  /\  h  e. 
Q. ) )  -> 
( ( f  +Q  g )  +Q  h
)  =  ( f  +Q  ( g  +Q  h ) ) )
4538, 40, 30, 42, 44caov32d 6099 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( ( ( A  <P  B  /\  w  e.  ( 1st `  B ) )  /\  ( v  e.  Q.  /\  ( w  +Q  v
)  e.  ( 1st `  B ) ) )  /\  ( z  e.  ( 1st `  A
)  /\  u  e.  ( 2nd `  A ) ) )  /\  u  <Q  ( z  +Q  v
) )  /\  z  <Q  w )  /\  (
s  e.  Q.  /\  ( z  +Q  s
)  =  w ) )  ->  ( (
z  +Q  v )  +Q  s )  =  ( ( z  +Q  s )  +Q  v
) )
46 simplrr 536 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( A  <P  B  /\  w  e.  ( 1st `  B ) )  /\  ( v  e.  Q.  /\  (
w  +Q  v )  e.  ( 1st `  B
) ) )  /\  ( z  e.  ( 1st `  A )  /\  u  e.  ( 2nd `  A ) ) )  ->  (
w  +Q  v )  e.  ( 1st `  B
) )
4746ad3antrrr 492 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( ( ( A  <P  B  /\  w  e.  ( 1st `  B ) )  /\  ( v  e.  Q.  /\  ( w  +Q  v
)  e.  ( 1st `  B ) ) )  /\  ( z  e.  ( 1st `  A
)  /\  u  e.  ( 2nd `  A ) ) )  /\  u  <Q  ( z  +Q  v
) )  /\  z  <Q  w )  /\  (
s  e.  Q.  /\  ( z  +Q  s
)  =  w ) )  ->  ( w  +Q  v )  e.  ( 1st `  B ) )
48 oveq1 5925 . . . . . . . . . . . . . . . . . . 19  |-  ( ( z  +Q  s )  =  w  ->  (
( z  +Q  s
)  +Q  v )  =  ( w  +Q  v ) )
4948eleq1d 2262 . . . . . . . . . . . . . . . . . 18  |-  ( ( z  +Q  s )  =  w  ->  (
( ( z  +Q  s )  +Q  v
)  e.  ( 1st `  B )  <->  ( w  +Q  v )  e.  ( 1st `  B ) ) )
5028, 49syl 14 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( ( ( A  <P  B  /\  w  e.  ( 1st `  B ) )  /\  ( v  e.  Q.  /\  ( w  +Q  v
)  e.  ( 1st `  B ) ) )  /\  ( z  e.  ( 1st `  A
)  /\  u  e.  ( 2nd `  A ) ) )  /\  u  <Q  ( z  +Q  v
) )  /\  z  <Q  w )  /\  (
s  e.  Q.  /\  ( z  +Q  s
)  =  w ) )  ->  ( (
( z  +Q  s
)  +Q  v )  e.  ( 1st `  B
)  <->  ( w  +Q  v )  e.  ( 1st `  B ) ) )
5147, 50mpbird 167 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( ( ( A  <P  B  /\  w  e.  ( 1st `  B ) )  /\  ( v  e.  Q.  /\  ( w  +Q  v
)  e.  ( 1st `  B ) ) )  /\  ( z  e.  ( 1st `  A
)  /\  u  e.  ( 2nd `  A ) ) )  /\  u  <Q  ( z  +Q  v
) )  /\  z  <Q  w )  /\  (
s  e.  Q.  /\  ( z  +Q  s
)  =  w ) )  ->  ( (
z  +Q  s )  +Q  v )  e.  ( 1st `  B
) )
5245, 51eqeltrd 2270 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ( ( A  <P  B  /\  w  e.  ( 1st `  B ) )  /\  ( v  e.  Q.  /\  ( w  +Q  v
)  e.  ( 1st `  B ) ) )  /\  ( z  e.  ( 1st `  A
)  /\  u  e.  ( 2nd `  A ) ) )  /\  u  <Q  ( z  +Q  v
) )  /\  z  <Q  w )  /\  (
s  e.  Q.  /\  ( z  +Q  s
)  =  w ) )  ->  ( (
z  +Q  v )  +Q  s )  e.  ( 1st `  B
) )
53 eleq1 2256 . . . . . . . . . . . . . . . . . 18  |-  ( y  =  ( z  +Q  v )  ->  (
y  e.  ( 2nd `  A )  <->  ( z  +Q  v )  e.  ( 2nd `  A ) ) )
54 oveq1 5925 . . . . . . . . . . . . . . . . . . 19  |-  ( y  =  ( z  +Q  v )  ->  (
y  +Q  s )  =  ( ( z  +Q  v )  +Q  s ) )
5554eleq1d 2262 . . . . . . . . . . . . . . . . . 18  |-  ( y  =  ( z  +Q  v )  ->  (
( y  +Q  s
)  e.  ( 1st `  B )  <->  ( (
z  +Q  v )  +Q  s )  e.  ( 1st `  B
) ) )
5653, 55anbi12d 473 . . . . . . . . . . . . . . . . 17  |-  ( y  =  ( z  +Q  v )  ->  (
( y  e.  ( 2nd `  A )  /\  ( y  +Q  s )  e.  ( 1st `  B ) )  <->  ( ( z  +Q  v )  e.  ( 2nd `  A
)  /\  ( (
z  +Q  v )  +Q  s )  e.  ( 1st `  B
) ) ) )
5756spcegv 2848 . . . . . . . . . . . . . . . 16  |-  ( ( z  +Q  v )  e.  ( 2nd `  A
)  ->  ( (
( z  +Q  v
)  e.  ( 2nd `  A )  /\  (
( z  +Q  v
)  +Q  s )  e.  ( 1st `  B
) )  ->  E. y
( y  e.  ( 2nd `  A )  /\  ( y  +Q  s )  e.  ( 1st `  B ) ) ) )
5857anabsi5 579 . . . . . . . . . . . . . . 15  |-  ( ( ( z  +Q  v
)  e.  ( 2nd `  A )  /\  (
( z  +Q  v
)  +Q  s )  e.  ( 1st `  B
) )  ->  E. y
( y  e.  ( 2nd `  A )  /\  ( y  +Q  s )  e.  ( 1st `  B ) ) )
5937, 52, 58syl2anc 411 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ( ( A  <P  B  /\  w  e.  ( 1st `  B ) )  /\  ( v  e.  Q.  /\  ( w  +Q  v
)  e.  ( 1st `  B ) ) )  /\  ( z  e.  ( 1st `  A
)  /\  u  e.  ( 2nd `  A ) ) )  /\  u  <Q  ( z  +Q  v
) )  /\  z  <Q  w )  /\  (
s  e.  Q.  /\  ( z  +Q  s
)  =  w ) )  ->  E. y
( y  e.  ( 2nd `  A )  /\  ( y  +Q  s )  e.  ( 1st `  B ) ) )
60 ltexprlem.1 . . . . . . . . . . . . . . 15  |-  C  = 
<. { x  e.  Q.  |  E. y ( y  e.  ( 2nd `  A
)  /\  ( y  +Q  x )  e.  ( 1st `  B ) ) } ,  {
x  e.  Q.  |  E. y ( y  e.  ( 1st `  A
)  /\  ( y  +Q  x )  e.  ( 2nd `  B ) ) } >.
6160ltexprlemell 7658 . . . . . . . . . . . . . 14  |-  ( s  e.  ( 1st `  C
)  <->  ( s  e. 
Q.  /\  E. y
( y  e.  ( 2nd `  A )  /\  ( y  +Q  s )  e.  ( 1st `  B ) ) ) )
6230, 59, 61sylanbrc 417 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ( ( A  <P  B  /\  w  e.  ( 1st `  B ) )  /\  ( v  e.  Q.  /\  ( w  +Q  v
)  e.  ( 1st `  B ) ) )  /\  ( z  e.  ( 1st `  A
)  /\  u  e.  ( 2nd `  A ) ) )  /\  u  <Q  ( z  +Q  v
) )  /\  z  <Q  w )  /\  (
s  e.  Q.  /\  ( z  +Q  s
)  =  w ) )  ->  s  e.  ( 1st `  C ) )
6315, 8syl 14 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( A 
<P  B  /\  w  e.  ( 1st `  B
) )  /\  (
v  e.  Q.  /\  ( w  +Q  v
)  e.  ( 1st `  B ) ) )  /\  ( z  e.  ( 1st `  A
)  /\  u  e.  ( 2nd `  A ) ) )  /\  u  <Q  ( z  +Q  v
) )  ->  A  e.  P. )
6463ad2antrr 488 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ( ( A  <P  B  /\  w  e.  ( 1st `  B ) )  /\  ( v  e.  Q.  /\  ( w  +Q  v
)  e.  ( 1st `  B ) ) )  /\  ( z  e.  ( 1st `  A
)  /\  u  e.  ( 2nd `  A ) ) )  /\  u  <Q  ( z  +Q  v
) )  /\  z  <Q  w )  /\  (
s  e.  Q.  /\  ( z  +Q  s
)  =  w ) )  ->  A  e.  P. )
6560ltexprlempr 7668 . . . . . . . . . . . . . . . 16  |-  ( A 
<P  B  ->  C  e. 
P. )
6615, 65syl 14 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( A 
<P  B  /\  w  e.  ( 1st `  B
) )  /\  (
v  e.  Q.  /\  ( w  +Q  v
)  e.  ( 1st `  B ) ) )  /\  ( z  e.  ( 1st `  A
)  /\  u  e.  ( 2nd `  A ) ) )  /\  u  <Q  ( z  +Q  v
) )  ->  C  e.  P. )
6766ad2antrr 488 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ( ( A  <P  B  /\  w  e.  ( 1st `  B ) )  /\  ( v  e.  Q.  /\  ( w  +Q  v
)  e.  ( 1st `  B ) ) )  /\  ( z  e.  ( 1st `  A
)  /\  u  e.  ( 2nd `  A ) ) )  /\  u  <Q  ( z  +Q  v
) )  /\  z  <Q  w )  /\  (
s  e.  Q.  /\  ( z  +Q  s
)  =  w ) )  ->  C  e.  P. )
68 df-iplp 7528 . . . . . . . . . . . . . . 15  |-  +P.  =  ( x  e.  P. ,  w  e.  P.  |->  <. { z  e.  Q.  |  E. f  e.  Q.  E. v  e.  Q.  (
f  e.  ( 1st `  x )  /\  v  e.  ( 1st `  w
)  /\  z  =  ( f  +Q  v
) ) } ,  { z  e.  Q.  |  E. f  e.  Q.  E. v  e.  Q.  (
f  e.  ( 2nd `  x )  /\  v  e.  ( 2nd `  w
)  /\  z  =  ( f  +Q  v
) ) } >. )
69 addclnq 7435 . . . . . . . . . . . . . . 15  |-  ( ( f  e.  Q.  /\  v  e.  Q. )  ->  ( f  +Q  v
)  e.  Q. )
7068, 69genpprecll 7574 . . . . . . . . . . . . . 14  |-  ( ( A  e.  P.  /\  C  e.  P. )  ->  ( ( z  e.  ( 1st `  A
)  /\  s  e.  ( 1st `  C ) )  ->  ( z  +Q  s )  e.  ( 1st `  ( A  +P.  C ) ) ) )
7164, 67, 70syl2anc 411 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ( ( A  <P  B  /\  w  e.  ( 1st `  B ) )  /\  ( v  e.  Q.  /\  ( w  +Q  v
)  e.  ( 1st `  B ) ) )  /\  ( z  e.  ( 1st `  A
)  /\  u  e.  ( 2nd `  A ) ) )  /\  u  <Q  ( z  +Q  v
) )  /\  z  <Q  w )  /\  (
s  e.  Q.  /\  ( z  +Q  s
)  =  w ) )  ->  ( (
z  e.  ( 1st `  A )  /\  s  e.  ( 1st `  C
) )  ->  (
z  +Q  s )  e.  ( 1st `  ( A  +P.  C ) ) ) )
7229, 62, 71mp2and 433 . . . . . . . . . . . 12  |-  ( ( ( ( ( ( ( A  <P  B  /\  w  e.  ( 1st `  B ) )  /\  ( v  e.  Q.  /\  ( w  +Q  v
)  e.  ( 1st `  B ) ) )  /\  ( z  e.  ( 1st `  A
)  /\  u  e.  ( 2nd `  A ) ) )  /\  u  <Q  ( z  +Q  v
) )  /\  z  <Q  w )  /\  (
s  e.  Q.  /\  ( z  +Q  s
)  =  w ) )  ->  ( z  +Q  s )  e.  ( 1st `  ( A  +P.  C ) ) )
7328, 72eqeltrrd 2271 . . . . . . . . . . 11  |-  ( ( ( ( ( ( ( A  <P  B  /\  w  e.  ( 1st `  B ) )  /\  ( v  e.  Q.  /\  ( w  +Q  v
)  e.  ( 1st `  B ) ) )  /\  ( z  e.  ( 1st `  A
)  /\  u  e.  ( 2nd `  A ) ) )  /\  u  <Q  ( z  +Q  v
) )  /\  z  <Q  w )  /\  (
s  e.  Q.  /\  ( z  +Q  s
)  =  w ) )  ->  w  e.  ( 1st `  ( A  +P.  C ) ) )
7427, 73rexlimddv 2616 . . . . . . . . . 10  |-  ( ( ( ( ( ( A  <P  B  /\  w  e.  ( 1st `  B ) )  /\  ( v  e.  Q.  /\  ( w  +Q  v
)  e.  ( 1st `  B ) ) )  /\  ( z  e.  ( 1st `  A
)  /\  u  e.  ( 2nd `  A ) ) )  /\  u  <Q  ( z  +Q  v
) )  /\  z  <Q  w )  ->  w  e.  ( 1st `  ( A  +P.  C ) ) )
7574ex 115 . . . . . . . . 9  |-  ( ( ( ( ( A 
<P  B  /\  w  e.  ( 1st `  B
) )  /\  (
v  e.  Q.  /\  ( w  +Q  v
)  e.  ( 1st `  B ) ) )  /\  ( z  e.  ( 1st `  A
)  /\  u  e.  ( 2nd `  A ) ) )  /\  u  <Q  ( z  +Q  v
) )  ->  (
z  <Q  w  ->  w  e.  ( 1st `  ( A  +P.  C ) ) ) )
7614ad2antrr 488 . . . . . . . . . . 11  |-  ( ( ( ( ( ( A  <P  B  /\  w  e.  ( 1st `  B ) )  /\  ( v  e.  Q.  /\  ( w  +Q  v
)  e.  ( 1st `  B ) ) )  /\  ( z  e.  ( 1st `  A
)  /\  u  e.  ( 2nd `  A ) ) )  /\  u  <Q  ( z  +Q  v
) )  /\  z  =  w )  ->  A  <P  B )
77 simpr 110 . . . . . . . . . . . 12  |-  ( ( ( ( ( ( A  <P  B  /\  w  e.  ( 1st `  B ) )  /\  ( v  e.  Q.  /\  ( w  +Q  v
)  e.  ( 1st `  B ) ) )  /\  ( z  e.  ( 1st `  A
)  /\  u  e.  ( 2nd `  A ) ) )  /\  u  <Q  ( z  +Q  v
) )  /\  z  =  w )  ->  z  =  w )
7816adantr 276 . . . . . . . . . . . 12  |-  ( ( ( ( ( ( A  <P  B  /\  w  e.  ( 1st `  B ) )  /\  ( v  e.  Q.  /\  ( w  +Q  v
)  e.  ( 1st `  B ) ) )  /\  ( z  e.  ( 1st `  A
)  /\  u  e.  ( 2nd `  A ) ) )  /\  u  <Q  ( z  +Q  v
) )  /\  z  =  w )  ->  z  e.  ( 1st `  A
) )
7977, 78eqeltrrd 2271 . . . . . . . . . . 11  |-  ( ( ( ( ( ( A  <P  B  /\  w  e.  ( 1st `  B ) )  /\  ( v  e.  Q.  /\  ( w  +Q  v
)  e.  ( 1st `  B ) ) )  /\  ( z  e.  ( 1st `  A
)  /\  u  e.  ( 2nd `  A ) ) )  /\  u  <Q  ( z  +Q  v
) )  /\  z  =  w )  ->  w  e.  ( 1st `  A
) )
80 ltaddpr 7657 . . . . . . . . . . . . 13  |-  ( ( A  e.  P.  /\  C  e.  P. )  ->  A  <P  ( A  +P.  C ) )
818, 65, 80syl2anc 411 . . . . . . . . . . . 12  |-  ( A 
<P  B  ->  A  <P  ( A  +P.  C ) )
82 ltprordil 7649 . . . . . . . . . . . . 13  |-  ( A 
<P  ( A  +P.  C
)  ->  ( 1st `  A )  C_  ( 1st `  ( A  +P.  C ) ) )
8382sseld 3178 . . . . . . . . . . . 12  |-  ( A 
<P  ( A  +P.  C
)  ->  ( w  e.  ( 1st `  A
)  ->  w  e.  ( 1st `  ( A  +P.  C ) ) ) )
8481, 83syl 14 . . . . . . . . . . 11  |-  ( A 
<P  B  ->  ( w  e.  ( 1st `  A
)  ->  w  e.  ( 1st `  ( A  +P.  C ) ) ) )
8576, 79, 84sylc 62 . . . . . . . . . 10  |-  ( ( ( ( ( ( A  <P  B  /\  w  e.  ( 1st `  B ) )  /\  ( v  e.  Q.  /\  ( w  +Q  v
)  e.  ( 1st `  B ) ) )  /\  ( z  e.  ( 1st `  A
)  /\  u  e.  ( 2nd `  A ) ) )  /\  u  <Q  ( z  +Q  v
) )  /\  z  =  w )  ->  w  e.  ( 1st `  ( A  +P.  C ) ) )
8685ex 115 . . . . . . . . 9  |-  ( ( ( ( ( A 
<P  B  /\  w  e.  ( 1st `  B
) )  /\  (
v  e.  Q.  /\  ( w  +Q  v
)  e.  ( 1st `  B ) ) )  /\  ( z  e.  ( 1st `  A
)  /\  u  e.  ( 2nd `  A ) ) )  /\  u  <Q  ( z  +Q  v
) )  ->  (
z  =  w  ->  w  e.  ( 1st `  ( A  +P.  C
) ) ) )
87 prcdnql 7544 . . . . . . . . . . . 12  |-  ( (
<. ( 1st `  A
) ,  ( 2nd `  A ) >.  e.  P.  /\  z  e.  ( 1st `  A ) )  -> 
( w  <Q  z  ->  w  e.  ( 1st `  A ) ) )
8810, 87sylan 283 . . . . . . . . . . 11  |-  ( ( A  <P  B  /\  z  e.  ( 1st `  A ) )  -> 
( w  <Q  z  ->  w  e.  ( 1st `  A ) ) )
8915, 16, 88syl2anc 411 . . . . . . . . . 10  |-  ( ( ( ( ( A 
<P  B  /\  w  e.  ( 1st `  B
) )  /\  (
v  e.  Q.  /\  ( w  +Q  v
)  e.  ( 1st `  B ) ) )  /\  ( z  e.  ( 1st `  A
)  /\  u  e.  ( 2nd `  A ) ) )  /\  u  <Q  ( z  +Q  v
) )  ->  (
w  <Q  z  ->  w  e.  ( 1st `  A
) ) )
9015, 89, 84sylsyld 58 . . . . . . . . 9  |-  ( ( ( ( ( A 
<P  B  /\  w  e.  ( 1st `  B
) )  /\  (
v  e.  Q.  /\  ( w  +Q  v
)  e.  ( 1st `  B ) ) )  /\  ( z  e.  ( 1st `  A
)  /\  u  e.  ( 2nd `  A ) ) )  /\  u  <Q  ( z  +Q  v
) )  ->  (
w  <Q  z  ->  w  e.  ( 1st `  ( A  +P.  C ) ) ) )
9175, 86, 903jaod 1315 . . . . . . . 8  |-  ( ( ( ( ( A 
<P  B  /\  w  e.  ( 1st `  B
) )  /\  (
v  e.  Q.  /\  ( w  +Q  v
)  e.  ( 1st `  B ) ) )  /\  ( z  e.  ( 1st `  A
)  /\  u  e.  ( 2nd `  A ) ) )  /\  u  <Q  ( z  +Q  v
) )  ->  (
( z  <Q  w  \/  z  =  w  \/  w  <Q  z )  ->  w  e.  ( 1st `  ( A  +P.  C ) ) ) )
9224, 91mpd 13 . . . . . . 7  |-  ( ( ( ( ( A 
<P  B  /\  w  e.  ( 1st `  B
) )  /\  (
v  e.  Q.  /\  ( w  +Q  v
)  e.  ( 1st `  B ) ) )  /\  ( z  e.  ( 1st `  A
)  /\  u  e.  ( 2nd `  A ) ) )  /\  u  <Q  ( z  +Q  v
) )  ->  w  e.  ( 1st `  ( A  +P.  C ) ) )
9392ex 115 . . . . . 6  |-  ( ( ( ( A  <P  B  /\  w  e.  ( 1st `  B ) )  /\  ( v  e.  Q.  /\  (
w  +Q  v )  e.  ( 1st `  B
) ) )  /\  ( z  e.  ( 1st `  A )  /\  u  e.  ( 2nd `  A ) ) )  ->  (
u  <Q  ( z  +Q  v )  ->  w  e.  ( 1st `  ( A  +P.  C ) ) ) )
9493rexlimdvva 2619 . . . . 5  |-  ( ( ( A  <P  B  /\  w  e.  ( 1st `  B ) )  /\  ( v  e.  Q.  /\  ( w  +Q  v
)  e.  ( 1st `  B ) ) )  ->  ( E. z  e.  ( 1st `  A
) E. u  e.  ( 2nd `  A
) u  <Q  (
z  +Q  v )  ->  w  e.  ( 1st `  ( A  +P.  C ) ) ) )
9513, 94mpd 13 . . . 4  |-  ( ( ( A  <P  B  /\  w  e.  ( 1st `  B ) )  /\  ( v  e.  Q.  /\  ( w  +Q  v
)  e.  ( 1st `  B ) ) )  ->  w  e.  ( 1st `  ( A  +P.  C ) ) )
967, 95rexlimddv 2616 . . 3  |-  ( ( A  <P  B  /\  w  e.  ( 1st `  B ) )  ->  w  e.  ( 1st `  ( A  +P.  C
) ) )
9796ex 115 . 2  |-  ( A 
<P  B  ->  ( w  e.  ( 1st `  B
)  ->  w  e.  ( 1st `  ( A  +P.  C ) ) ) )
9897ssrdv 3185 1  |-  ( A 
<P  B  ->  ( 1st `  B )  C_  ( 1st `  ( A  +P.  C ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    \/ w3o 979    /\ w3a 980    = wceq 1364   E.wex 1503    e. wcel 2164   E.wrex 2473   {crab 2476    C_ wss 3153   <.cop 3621   class class class wbr 4029   ` cfv 5254  (class class class)co 5918   1stc1st 6191   2ndc2nd 6192   Q.cnq 7340    +Q cplq 7342    <Q cltq 7345   P.cnp 7351    +P. cpp 7353    <P cltp 7355
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4144  ax-sep 4147  ax-nul 4155  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569  ax-iinf 4620
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-ral 2477  df-rex 2478  df-reu 2479  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3447  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-iun 3914  df-br 4030  df-opab 4091  df-mpt 4092  df-tr 4128  df-eprel 4320  df-id 4324  df-po 4327  df-iso 4328  df-iord 4397  df-on 4399  df-suc 4402  df-iom 4623  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-f1 5259  df-fo 5260  df-f1o 5261  df-fv 5262  df-ov 5921  df-oprab 5922  df-mpo 5923  df-1st 6193  df-2nd 6194  df-recs 6358  df-irdg 6423  df-1o 6469  df-2o 6470  df-oadd 6473  df-omul 6474  df-er 6587  df-ec 6589  df-qs 6593  df-ni 7364  df-pli 7365  df-mi 7366  df-lti 7367  df-plpq 7404  df-mpq 7405  df-enq 7407  df-nqqs 7408  df-plqqs 7409  df-mqqs 7410  df-1nqqs 7411  df-rq 7412  df-ltnqqs 7413  df-enq0 7484  df-nq0 7485  df-0nq0 7486  df-plq0 7487  df-mq0 7488  df-inp 7526  df-iplp 7528  df-iltp 7530
This theorem is referenced by:  ltexpri  7673
  Copyright terms: Public domain W3C validator