ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ltexprlemrl Unicode version

Theorem ltexprlemrl 7551
Description: Lemma for ltexpri 7554. Reverse direction of our result for lower cuts. (Contributed by Jim Kingdon, 17-Dec-2019.)
Hypothesis
Ref Expression
ltexprlem.1  |-  C  = 
<. { x  e.  Q.  |  E. y ( y  e.  ( 2nd `  A
)  /\  ( y  +Q  x )  e.  ( 1st `  B ) ) } ,  {
x  e.  Q.  |  E. y ( y  e.  ( 1st `  A
)  /\  ( y  +Q  x )  e.  ( 2nd `  B ) ) } >.
Assertion
Ref Expression
ltexprlemrl  |-  ( A 
<P  B  ->  ( 1st `  B )  C_  ( 1st `  ( A  +P.  C ) ) )
Distinct variable groups:    x, y, A   
x, B, y    x, C, y

Proof of Theorem ltexprlemrl
Dummy variables  z  w  u  v  f  g  h  s are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ltrelpr 7446 . . . . . . . 8  |-  <P  C_  ( P.  X.  P. )
21brel 4656 . . . . . . 7  |-  ( A 
<P  B  ->  ( A  e.  P.  /\  B  e.  P. ) )
32simprd 113 . . . . . 6  |-  ( A 
<P  B  ->  B  e. 
P. )
4 prop 7416 . . . . . 6  |-  ( B  e.  P.  ->  <. ( 1st `  B ) ,  ( 2nd `  B
) >.  e.  P. )
53, 4syl 14 . . . . 5  |-  ( A 
<P  B  ->  <. ( 1st `  B ) ,  ( 2nd `  B
) >.  e.  P. )
6 prnmaddl 7431 . . . . 5  |-  ( (
<. ( 1st `  B
) ,  ( 2nd `  B ) >.  e.  P.  /\  w  e.  ( 1st `  B ) )  ->  E. v  e.  Q.  ( w  +Q  v
)  e.  ( 1st `  B ) )
75, 6sylan 281 . . . 4  |-  ( ( A  <P  B  /\  w  e.  ( 1st `  B ) )  ->  E. v  e.  Q.  ( w  +Q  v
)  e.  ( 1st `  B ) )
82simpld 111 . . . . . . . 8  |-  ( A 
<P  B  ->  A  e. 
P. )
9 prop 7416 . . . . . . . 8  |-  ( A  e.  P.  ->  <. ( 1st `  A ) ,  ( 2nd `  A
) >.  e.  P. )
108, 9syl 14 . . . . . . 7  |-  ( A 
<P  B  ->  <. ( 1st `  A ) ,  ( 2nd `  A
) >.  e.  P. )
11 prarloc 7444 . . . . . . 7  |-  ( (
<. ( 1st `  A
) ,  ( 2nd `  A ) >.  e.  P.  /\  v  e.  Q. )  ->  E. z  e.  ( 1st `  A ) E. u  e.  ( 2nd `  A ) u  <Q  ( z  +Q  v ) )
1210, 11sylan 281 . . . . . 6  |-  ( ( A  <P  B  /\  v  e.  Q. )  ->  E. z  e.  ( 1st `  A ) E. u  e.  ( 2nd `  A ) u  <Q  ( z  +Q  v ) )
1312ad2ant2r 501 . . . . 5  |-  ( ( ( A  <P  B  /\  w  e.  ( 1st `  B ) )  /\  ( v  e.  Q.  /\  ( w  +Q  v
)  e.  ( 1st `  B ) ) )  ->  E. z  e.  ( 1st `  A ) E. u  e.  ( 2nd `  A ) u  <Q  ( z  +Q  v ) )
14 simplll 523 . . . . . . . . . . 11  |-  ( ( ( ( A  <P  B  /\  w  e.  ( 1st `  B ) )  /\  ( v  e.  Q.  /\  (
w  +Q  v )  e.  ( 1st `  B
) ) )  /\  ( z  e.  ( 1st `  A )  /\  u  e.  ( 2nd `  A ) ) )  ->  A  <P  B )
1514adantr 274 . . . . . . . . . 10  |-  ( ( ( ( ( A 
<P  B  /\  w  e.  ( 1st `  B
) )  /\  (
v  e.  Q.  /\  ( w  +Q  v
)  e.  ( 1st `  B ) ) )  /\  ( z  e.  ( 1st `  A
)  /\  u  e.  ( 2nd `  A ) ) )  /\  u  <Q  ( z  +Q  v
) )  ->  A  <P  B )
16 simplrl 525 . . . . . . . . . 10  |-  ( ( ( ( ( A 
<P  B  /\  w  e.  ( 1st `  B
) )  /\  (
v  e.  Q.  /\  ( w  +Q  v
)  e.  ( 1st `  B ) ) )  /\  ( z  e.  ( 1st `  A
)  /\  u  e.  ( 2nd `  A ) ) )  /\  u  <Q  ( z  +Q  v
) )  ->  z  e.  ( 1st `  A
) )
17 elprnql 7422 . . . . . . . . . . 11  |-  ( (
<. ( 1st `  A
) ,  ( 2nd `  A ) >.  e.  P.  /\  z  e.  ( 1st `  A ) )  -> 
z  e.  Q. )
1810, 17sylan 281 . . . . . . . . . 10  |-  ( ( A  <P  B  /\  z  e.  ( 1st `  A ) )  -> 
z  e.  Q. )
1915, 16, 18syl2anc 409 . . . . . . . . 9  |-  ( ( ( ( ( A 
<P  B  /\  w  e.  ( 1st `  B
) )  /\  (
v  e.  Q.  /\  ( w  +Q  v
)  e.  ( 1st `  B ) ) )  /\  ( z  e.  ( 1st `  A
)  /\  u  e.  ( 2nd `  A ) ) )  /\  u  <Q  ( z  +Q  v
) )  ->  z  e.  Q. )
20 elprnql 7422 . . . . . . . . . . 11  |-  ( (
<. ( 1st `  B
) ,  ( 2nd `  B ) >.  e.  P.  /\  w  e.  ( 1st `  B ) )  ->  w  e.  Q. )
215, 20sylan 281 . . . . . . . . . 10  |-  ( ( A  <P  B  /\  w  e.  ( 1st `  B ) )  ->  w  e.  Q. )
2221ad3antrrr 484 . . . . . . . . 9  |-  ( ( ( ( ( A 
<P  B  /\  w  e.  ( 1st `  B
) )  /\  (
v  e.  Q.  /\  ( w  +Q  v
)  e.  ( 1st `  B ) ) )  /\  ( z  e.  ( 1st `  A
)  /\  u  e.  ( 2nd `  A ) ) )  /\  u  <Q  ( z  +Q  v
) )  ->  w  e.  Q. )
23 nqtri3or 7337 . . . . . . . . 9  |-  ( ( z  e.  Q.  /\  w  e.  Q. )  ->  ( z  <Q  w  \/  z  =  w  \/  w  <Q  z ) )
2419, 22, 23syl2anc 409 . . . . . . . 8  |-  ( ( ( ( ( A 
<P  B  /\  w  e.  ( 1st `  B
) )  /\  (
v  e.  Q.  /\  ( w  +Q  v
)  e.  ( 1st `  B ) ) )  /\  ( z  e.  ( 1st `  A
)  /\  u  e.  ( 2nd `  A ) ) )  /\  u  <Q  ( z  +Q  v
) )  ->  (
z  <Q  w  \/  z  =  w  \/  w  <Q  z ) )
25 ltexnqq 7349 . . . . . . . . . . . . 13  |-  ( ( z  e.  Q.  /\  w  e.  Q. )  ->  ( z  <Q  w  <->  E. s  e.  Q.  (
z  +Q  s )  =  w ) )
2619, 22, 25syl2anc 409 . . . . . . . . . . . 12  |-  ( ( ( ( ( A 
<P  B  /\  w  e.  ( 1st `  B
) )  /\  (
v  e.  Q.  /\  ( w  +Q  v
)  e.  ( 1st `  B ) ) )  /\  ( z  e.  ( 1st `  A
)  /\  u  e.  ( 2nd `  A ) ) )  /\  u  <Q  ( z  +Q  v
) )  ->  (
z  <Q  w  <->  E. s  e.  Q.  ( z  +Q  s )  =  w ) )
2726biimpa 294 . . . . . . . . . . 11  |-  ( ( ( ( ( ( A  <P  B  /\  w  e.  ( 1st `  B ) )  /\  ( v  e.  Q.  /\  ( w  +Q  v
)  e.  ( 1st `  B ) ) )  /\  ( z  e.  ( 1st `  A
)  /\  u  e.  ( 2nd `  A ) ) )  /\  u  <Q  ( z  +Q  v
) )  /\  z  <Q  w )  ->  E. s  e.  Q.  ( z  +Q  s )  =  w )
28 simprr 522 . . . . . . . . . . . 12  |-  ( ( ( ( ( ( ( A  <P  B  /\  w  e.  ( 1st `  B ) )  /\  ( v  e.  Q.  /\  ( w  +Q  v
)  e.  ( 1st `  B ) ) )  /\  ( z  e.  ( 1st `  A
)  /\  u  e.  ( 2nd `  A ) ) )  /\  u  <Q  ( z  +Q  v
) )  /\  z  <Q  w )  /\  (
s  e.  Q.  /\  ( z  +Q  s
)  =  w ) )  ->  ( z  +Q  s )  =  w )
2916ad2antrr 480 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ( ( A  <P  B  /\  w  e.  ( 1st `  B ) )  /\  ( v  e.  Q.  /\  ( w  +Q  v
)  e.  ( 1st `  B ) ) )  /\  ( z  e.  ( 1st `  A
)  /\  u  e.  ( 2nd `  A ) ) )  /\  u  <Q  ( z  +Q  v
) )  /\  z  <Q  w )  /\  (
s  e.  Q.  /\  ( z  +Q  s
)  =  w ) )  ->  z  e.  ( 1st `  A ) )
30 simprl 521 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ( ( A  <P  B  /\  w  e.  ( 1st `  B ) )  /\  ( v  e.  Q.  /\  ( w  +Q  v
)  e.  ( 1st `  B ) ) )  /\  ( z  e.  ( 1st `  A
)  /\  u  e.  ( 2nd `  A ) ) )  /\  u  <Q  ( z  +Q  v
) )  /\  z  <Q  w )  /\  (
s  e.  Q.  /\  ( z  +Q  s
)  =  w ) )  ->  s  e.  Q. )
31 simpr 109 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( A 
<P  B  /\  w  e.  ( 1st `  B
) )  /\  (
v  e.  Q.  /\  ( w  +Q  v
)  e.  ( 1st `  B ) ) )  /\  ( z  e.  ( 1st `  A
)  /\  u  e.  ( 2nd `  A ) ) )  /\  u  <Q  ( z  +Q  v
) )  ->  u  <Q  ( z  +Q  v
) )
32 simplrr 526 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ( A 
<P  B  /\  w  e.  ( 1st `  B
) )  /\  (
v  e.  Q.  /\  ( w  +Q  v
)  e.  ( 1st `  B ) ) )  /\  ( z  e.  ( 1st `  A
)  /\  u  e.  ( 2nd `  A ) ) )  /\  u  <Q  ( z  +Q  v
) )  ->  u  e.  ( 2nd `  A
) )
33 prcunqu 7426 . . . . . . . . . . . . . . . . . . 19  |-  ( (
<. ( 1st `  A
) ,  ( 2nd `  A ) >.  e.  P.  /\  u  e.  ( 2nd `  A ) )  -> 
( u  <Q  (
z  +Q  v )  ->  ( z  +Q  v )  e.  ( 2nd `  A ) ) )
3410, 33sylan 281 . . . . . . . . . . . . . . . . . 18  |-  ( ( A  <P  B  /\  u  e.  ( 2nd `  A ) )  -> 
( u  <Q  (
z  +Q  v )  ->  ( z  +Q  v )  e.  ( 2nd `  A ) ) )
3515, 32, 34syl2anc 409 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( A 
<P  B  /\  w  e.  ( 1st `  B
) )  /\  (
v  e.  Q.  /\  ( w  +Q  v
)  e.  ( 1st `  B ) ) )  /\  ( z  e.  ( 1st `  A
)  /\  u  e.  ( 2nd `  A ) ) )  /\  u  <Q  ( z  +Q  v
) )  ->  (
u  <Q  ( z  +Q  v )  ->  (
z  +Q  v )  e.  ( 2nd `  A
) ) )
3631, 35mpd 13 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( A 
<P  B  /\  w  e.  ( 1st `  B
) )  /\  (
v  e.  Q.  /\  ( w  +Q  v
)  e.  ( 1st `  B ) ) )  /\  ( z  e.  ( 1st `  A
)  /\  u  e.  ( 2nd `  A ) ) )  /\  u  <Q  ( z  +Q  v
) )  ->  (
z  +Q  v )  e.  ( 2nd `  A
) )
3736ad2antrr 480 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ( ( A  <P  B  /\  w  e.  ( 1st `  B ) )  /\  ( v  e.  Q.  /\  ( w  +Q  v
)  e.  ( 1st `  B ) ) )  /\  ( z  e.  ( 1st `  A
)  /\  u  e.  ( 2nd `  A ) ) )  /\  u  <Q  ( z  +Q  v
) )  /\  z  <Q  w )  /\  (
s  e.  Q.  /\  ( z  +Q  s
)  =  w ) )  ->  ( z  +Q  v )  e.  ( 2nd `  A ) )
3819ad2antrr 480 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( ( ( A  <P  B  /\  w  e.  ( 1st `  B ) )  /\  ( v  e.  Q.  /\  ( w  +Q  v
)  e.  ( 1st `  B ) ) )  /\  ( z  e.  ( 1st `  A
)  /\  u  e.  ( 2nd `  A ) ) )  /\  u  <Q  ( z  +Q  v
) )  /\  z  <Q  w )  /\  (
s  e.  Q.  /\  ( z  +Q  s
)  =  w ) )  ->  z  e.  Q. )
39 simplrl 525 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( A  <P  B  /\  w  e.  ( 1st `  B ) )  /\  ( v  e.  Q.  /\  (
w  +Q  v )  e.  ( 1st `  B
) ) )  /\  ( z  e.  ( 1st `  A )  /\  u  e.  ( 2nd `  A ) ) )  ->  v  e.  Q. )
4039ad3antrrr 484 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( ( ( A  <P  B  /\  w  e.  ( 1st `  B ) )  /\  ( v  e.  Q.  /\  ( w  +Q  v
)  e.  ( 1st `  B ) ) )  /\  ( z  e.  ( 1st `  A
)  /\  u  e.  ( 2nd `  A ) ) )  /\  u  <Q  ( z  +Q  v
) )  /\  z  <Q  w )  /\  (
s  e.  Q.  /\  ( z  +Q  s
)  =  w ) )  ->  v  e.  Q. )
41 addcomnqg 7322 . . . . . . . . . . . . . . . . . 18  |-  ( ( f  e.  Q.  /\  g  e.  Q. )  ->  ( f  +Q  g
)  =  ( g  +Q  f ) )
4241adantl 275 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( ( ( ( A  <P  B  /\  w  e.  ( 1st `  B ) )  /\  ( v  e.  Q.  /\  (
w  +Q  v )  e.  ( 1st `  B
) ) )  /\  ( z  e.  ( 1st `  A )  /\  u  e.  ( 2nd `  A ) ) )  /\  u  <Q  ( z  +Q  v
) )  /\  z  <Q  w )  /\  (
s  e.  Q.  /\  ( z  +Q  s
)  =  w ) )  /\  ( f  e.  Q.  /\  g  e.  Q. ) )  -> 
( f  +Q  g
)  =  ( g  +Q  f ) )
43 addassnqg 7323 . . . . . . . . . . . . . . . . . 18  |-  ( ( f  e.  Q.  /\  g  e.  Q.  /\  h  e.  Q. )  ->  (
( f  +Q  g
)  +Q  h )  =  ( f  +Q  ( g  +Q  h
) ) )
4443adantl 275 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( ( ( ( A  <P  B  /\  w  e.  ( 1st `  B ) )  /\  ( v  e.  Q.  /\  (
w  +Q  v )  e.  ( 1st `  B
) ) )  /\  ( z  e.  ( 1st `  A )  /\  u  e.  ( 2nd `  A ) ) )  /\  u  <Q  ( z  +Q  v
) )  /\  z  <Q  w )  /\  (
s  e.  Q.  /\  ( z  +Q  s
)  =  w ) )  /\  ( f  e.  Q.  /\  g  e.  Q.  /\  h  e. 
Q. ) )  -> 
( ( f  +Q  g )  +Q  h
)  =  ( f  +Q  ( g  +Q  h ) ) )
4538, 40, 30, 42, 44caov32d 6022 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( ( ( A  <P  B  /\  w  e.  ( 1st `  B ) )  /\  ( v  e.  Q.  /\  ( w  +Q  v
)  e.  ( 1st `  B ) ) )  /\  ( z  e.  ( 1st `  A
)  /\  u  e.  ( 2nd `  A ) ) )  /\  u  <Q  ( z  +Q  v
) )  /\  z  <Q  w )  /\  (
s  e.  Q.  /\  ( z  +Q  s
)  =  w ) )  ->  ( (
z  +Q  v )  +Q  s )  =  ( ( z  +Q  s )  +Q  v
) )
46 simplrr 526 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( A  <P  B  /\  w  e.  ( 1st `  B ) )  /\  ( v  e.  Q.  /\  (
w  +Q  v )  e.  ( 1st `  B
) ) )  /\  ( z  e.  ( 1st `  A )  /\  u  e.  ( 2nd `  A ) ) )  ->  (
w  +Q  v )  e.  ( 1st `  B
) )
4746ad3antrrr 484 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( ( ( A  <P  B  /\  w  e.  ( 1st `  B ) )  /\  ( v  e.  Q.  /\  ( w  +Q  v
)  e.  ( 1st `  B ) ) )  /\  ( z  e.  ( 1st `  A
)  /\  u  e.  ( 2nd `  A ) ) )  /\  u  <Q  ( z  +Q  v
) )  /\  z  <Q  w )  /\  (
s  e.  Q.  /\  ( z  +Q  s
)  =  w ) )  ->  ( w  +Q  v )  e.  ( 1st `  B ) )
48 oveq1 5849 . . . . . . . . . . . . . . . . . . 19  |-  ( ( z  +Q  s )  =  w  ->  (
( z  +Q  s
)  +Q  v )  =  ( w  +Q  v ) )
4948eleq1d 2235 . . . . . . . . . . . . . . . . . 18  |-  ( ( z  +Q  s )  =  w  ->  (
( ( z  +Q  s )  +Q  v
)  e.  ( 1st `  B )  <->  ( w  +Q  v )  e.  ( 1st `  B ) ) )
5028, 49syl 14 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( ( ( A  <P  B  /\  w  e.  ( 1st `  B ) )  /\  ( v  e.  Q.  /\  ( w  +Q  v
)  e.  ( 1st `  B ) ) )  /\  ( z  e.  ( 1st `  A
)  /\  u  e.  ( 2nd `  A ) ) )  /\  u  <Q  ( z  +Q  v
) )  /\  z  <Q  w )  /\  (
s  e.  Q.  /\  ( z  +Q  s
)  =  w ) )  ->  ( (
( z  +Q  s
)  +Q  v )  e.  ( 1st `  B
)  <->  ( w  +Q  v )  e.  ( 1st `  B ) ) )
5147, 50mpbird 166 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( ( ( A  <P  B  /\  w  e.  ( 1st `  B ) )  /\  ( v  e.  Q.  /\  ( w  +Q  v
)  e.  ( 1st `  B ) ) )  /\  ( z  e.  ( 1st `  A
)  /\  u  e.  ( 2nd `  A ) ) )  /\  u  <Q  ( z  +Q  v
) )  /\  z  <Q  w )  /\  (
s  e.  Q.  /\  ( z  +Q  s
)  =  w ) )  ->  ( (
z  +Q  s )  +Q  v )  e.  ( 1st `  B
) )
5245, 51eqeltrd 2243 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ( ( A  <P  B  /\  w  e.  ( 1st `  B ) )  /\  ( v  e.  Q.  /\  ( w  +Q  v
)  e.  ( 1st `  B ) ) )  /\  ( z  e.  ( 1st `  A
)  /\  u  e.  ( 2nd `  A ) ) )  /\  u  <Q  ( z  +Q  v
) )  /\  z  <Q  w )  /\  (
s  e.  Q.  /\  ( z  +Q  s
)  =  w ) )  ->  ( (
z  +Q  v )  +Q  s )  e.  ( 1st `  B
) )
53 eleq1 2229 . . . . . . . . . . . . . . . . . 18  |-  ( y  =  ( z  +Q  v )  ->  (
y  e.  ( 2nd `  A )  <->  ( z  +Q  v )  e.  ( 2nd `  A ) ) )
54 oveq1 5849 . . . . . . . . . . . . . . . . . . 19  |-  ( y  =  ( z  +Q  v )  ->  (
y  +Q  s )  =  ( ( z  +Q  v )  +Q  s ) )
5554eleq1d 2235 . . . . . . . . . . . . . . . . . 18  |-  ( y  =  ( z  +Q  v )  ->  (
( y  +Q  s
)  e.  ( 1st `  B )  <->  ( (
z  +Q  v )  +Q  s )  e.  ( 1st `  B
) ) )
5653, 55anbi12d 465 . . . . . . . . . . . . . . . . 17  |-  ( y  =  ( z  +Q  v )  ->  (
( y  e.  ( 2nd `  A )  /\  ( y  +Q  s )  e.  ( 1st `  B ) )  <->  ( ( z  +Q  v )  e.  ( 2nd `  A
)  /\  ( (
z  +Q  v )  +Q  s )  e.  ( 1st `  B
) ) ) )
5756spcegv 2814 . . . . . . . . . . . . . . . 16  |-  ( ( z  +Q  v )  e.  ( 2nd `  A
)  ->  ( (
( z  +Q  v
)  e.  ( 2nd `  A )  /\  (
( z  +Q  v
)  +Q  s )  e.  ( 1st `  B
) )  ->  E. y
( y  e.  ( 2nd `  A )  /\  ( y  +Q  s )  e.  ( 1st `  B ) ) ) )
5857anabsi5 569 . . . . . . . . . . . . . . 15  |-  ( ( ( z  +Q  v
)  e.  ( 2nd `  A )  /\  (
( z  +Q  v
)  +Q  s )  e.  ( 1st `  B
) )  ->  E. y
( y  e.  ( 2nd `  A )  /\  ( y  +Q  s )  e.  ( 1st `  B ) ) )
5937, 52, 58syl2anc 409 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ( ( A  <P  B  /\  w  e.  ( 1st `  B ) )  /\  ( v  e.  Q.  /\  ( w  +Q  v
)  e.  ( 1st `  B ) ) )  /\  ( z  e.  ( 1st `  A
)  /\  u  e.  ( 2nd `  A ) ) )  /\  u  <Q  ( z  +Q  v
) )  /\  z  <Q  w )  /\  (
s  e.  Q.  /\  ( z  +Q  s
)  =  w ) )  ->  E. y
( y  e.  ( 2nd `  A )  /\  ( y  +Q  s )  e.  ( 1st `  B ) ) )
60 ltexprlem.1 . . . . . . . . . . . . . . 15  |-  C  = 
<. { x  e.  Q.  |  E. y ( y  e.  ( 2nd `  A
)  /\  ( y  +Q  x )  e.  ( 1st `  B ) ) } ,  {
x  e.  Q.  |  E. y ( y  e.  ( 1st `  A
)  /\  ( y  +Q  x )  e.  ( 2nd `  B ) ) } >.
6160ltexprlemell 7539 . . . . . . . . . . . . . 14  |-  ( s  e.  ( 1st `  C
)  <->  ( s  e. 
Q.  /\  E. y
( y  e.  ( 2nd `  A )  /\  ( y  +Q  s )  e.  ( 1st `  B ) ) ) )
6230, 59, 61sylanbrc 414 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ( ( A  <P  B  /\  w  e.  ( 1st `  B ) )  /\  ( v  e.  Q.  /\  ( w  +Q  v
)  e.  ( 1st `  B ) ) )  /\  ( z  e.  ( 1st `  A
)  /\  u  e.  ( 2nd `  A ) ) )  /\  u  <Q  ( z  +Q  v
) )  /\  z  <Q  w )  /\  (
s  e.  Q.  /\  ( z  +Q  s
)  =  w ) )  ->  s  e.  ( 1st `  C ) )
6315, 8syl 14 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( A 
<P  B  /\  w  e.  ( 1st `  B
) )  /\  (
v  e.  Q.  /\  ( w  +Q  v
)  e.  ( 1st `  B ) ) )  /\  ( z  e.  ( 1st `  A
)  /\  u  e.  ( 2nd `  A ) ) )  /\  u  <Q  ( z  +Q  v
) )  ->  A  e.  P. )
6463ad2antrr 480 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ( ( A  <P  B  /\  w  e.  ( 1st `  B ) )  /\  ( v  e.  Q.  /\  ( w  +Q  v
)  e.  ( 1st `  B ) ) )  /\  ( z  e.  ( 1st `  A
)  /\  u  e.  ( 2nd `  A ) ) )  /\  u  <Q  ( z  +Q  v
) )  /\  z  <Q  w )  /\  (
s  e.  Q.  /\  ( z  +Q  s
)  =  w ) )  ->  A  e.  P. )
6560ltexprlempr 7549 . . . . . . . . . . . . . . . 16  |-  ( A 
<P  B  ->  C  e. 
P. )
6615, 65syl 14 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( A 
<P  B  /\  w  e.  ( 1st `  B
) )  /\  (
v  e.  Q.  /\  ( w  +Q  v
)  e.  ( 1st `  B ) ) )  /\  ( z  e.  ( 1st `  A
)  /\  u  e.  ( 2nd `  A ) ) )  /\  u  <Q  ( z  +Q  v
) )  ->  C  e.  P. )
6766ad2antrr 480 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ( ( A  <P  B  /\  w  e.  ( 1st `  B ) )  /\  ( v  e.  Q.  /\  ( w  +Q  v
)  e.  ( 1st `  B ) ) )  /\  ( z  e.  ( 1st `  A
)  /\  u  e.  ( 2nd `  A ) ) )  /\  u  <Q  ( z  +Q  v
) )  /\  z  <Q  w )  /\  (
s  e.  Q.  /\  ( z  +Q  s
)  =  w ) )  ->  C  e.  P. )
68 df-iplp 7409 . . . . . . . . . . . . . . 15  |-  +P.  =  ( x  e.  P. ,  w  e.  P.  |->  <. { z  e.  Q.  |  E. f  e.  Q.  E. v  e.  Q.  (
f  e.  ( 1st `  x )  /\  v  e.  ( 1st `  w
)  /\  z  =  ( f  +Q  v
) ) } ,  { z  e.  Q.  |  E. f  e.  Q.  E. v  e.  Q.  (
f  e.  ( 2nd `  x )  /\  v  e.  ( 2nd `  w
)  /\  z  =  ( f  +Q  v
) ) } >. )
69 addclnq 7316 . . . . . . . . . . . . . . 15  |-  ( ( f  e.  Q.  /\  v  e.  Q. )  ->  ( f  +Q  v
)  e.  Q. )
7068, 69genpprecll 7455 . . . . . . . . . . . . . 14  |-  ( ( A  e.  P.  /\  C  e.  P. )  ->  ( ( z  e.  ( 1st `  A
)  /\  s  e.  ( 1st `  C ) )  ->  ( z  +Q  s )  e.  ( 1st `  ( A  +P.  C ) ) ) )
7164, 67, 70syl2anc 409 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ( ( A  <P  B  /\  w  e.  ( 1st `  B ) )  /\  ( v  e.  Q.  /\  ( w  +Q  v
)  e.  ( 1st `  B ) ) )  /\  ( z  e.  ( 1st `  A
)  /\  u  e.  ( 2nd `  A ) ) )  /\  u  <Q  ( z  +Q  v
) )  /\  z  <Q  w )  /\  (
s  e.  Q.  /\  ( z  +Q  s
)  =  w ) )  ->  ( (
z  e.  ( 1st `  A )  /\  s  e.  ( 1st `  C
) )  ->  (
z  +Q  s )  e.  ( 1st `  ( A  +P.  C ) ) ) )
7229, 62, 71mp2and 430 . . . . . . . . . . . 12  |-  ( ( ( ( ( ( ( A  <P  B  /\  w  e.  ( 1st `  B ) )  /\  ( v  e.  Q.  /\  ( w  +Q  v
)  e.  ( 1st `  B ) ) )  /\  ( z  e.  ( 1st `  A
)  /\  u  e.  ( 2nd `  A ) ) )  /\  u  <Q  ( z  +Q  v
) )  /\  z  <Q  w )  /\  (
s  e.  Q.  /\  ( z  +Q  s
)  =  w ) )  ->  ( z  +Q  s )  e.  ( 1st `  ( A  +P.  C ) ) )
7328, 72eqeltrrd 2244 . . . . . . . . . . 11  |-  ( ( ( ( ( ( ( A  <P  B  /\  w  e.  ( 1st `  B ) )  /\  ( v  e.  Q.  /\  ( w  +Q  v
)  e.  ( 1st `  B ) ) )  /\  ( z  e.  ( 1st `  A
)  /\  u  e.  ( 2nd `  A ) ) )  /\  u  <Q  ( z  +Q  v
) )  /\  z  <Q  w )  /\  (
s  e.  Q.  /\  ( z  +Q  s
)  =  w ) )  ->  w  e.  ( 1st `  ( A  +P.  C ) ) )
7427, 73rexlimddv 2588 . . . . . . . . . 10  |-  ( ( ( ( ( ( A  <P  B  /\  w  e.  ( 1st `  B ) )  /\  ( v  e.  Q.  /\  ( w  +Q  v
)  e.  ( 1st `  B ) ) )  /\  ( z  e.  ( 1st `  A
)  /\  u  e.  ( 2nd `  A ) ) )  /\  u  <Q  ( z  +Q  v
) )  /\  z  <Q  w )  ->  w  e.  ( 1st `  ( A  +P.  C ) ) )
7574ex 114 . . . . . . . . 9  |-  ( ( ( ( ( A 
<P  B  /\  w  e.  ( 1st `  B
) )  /\  (
v  e.  Q.  /\  ( w  +Q  v
)  e.  ( 1st `  B ) ) )  /\  ( z  e.  ( 1st `  A
)  /\  u  e.  ( 2nd `  A ) ) )  /\  u  <Q  ( z  +Q  v
) )  ->  (
z  <Q  w  ->  w  e.  ( 1st `  ( A  +P.  C ) ) ) )
7614ad2antrr 480 . . . . . . . . . . 11  |-  ( ( ( ( ( ( A  <P  B  /\  w  e.  ( 1st `  B ) )  /\  ( v  e.  Q.  /\  ( w  +Q  v
)  e.  ( 1st `  B ) ) )  /\  ( z  e.  ( 1st `  A
)  /\  u  e.  ( 2nd `  A ) ) )  /\  u  <Q  ( z  +Q  v
) )  /\  z  =  w )  ->  A  <P  B )
77 simpr 109 . . . . . . . . . . . 12  |-  ( ( ( ( ( ( A  <P  B  /\  w  e.  ( 1st `  B ) )  /\  ( v  e.  Q.  /\  ( w  +Q  v
)  e.  ( 1st `  B ) ) )  /\  ( z  e.  ( 1st `  A
)  /\  u  e.  ( 2nd `  A ) ) )  /\  u  <Q  ( z  +Q  v
) )  /\  z  =  w )  ->  z  =  w )
7816adantr 274 . . . . . . . . . . . 12  |-  ( ( ( ( ( ( A  <P  B  /\  w  e.  ( 1st `  B ) )  /\  ( v  e.  Q.  /\  ( w  +Q  v
)  e.  ( 1st `  B ) ) )  /\  ( z  e.  ( 1st `  A
)  /\  u  e.  ( 2nd `  A ) ) )  /\  u  <Q  ( z  +Q  v
) )  /\  z  =  w )  ->  z  e.  ( 1st `  A
) )
7977, 78eqeltrrd 2244 . . . . . . . . . . 11  |-  ( ( ( ( ( ( A  <P  B  /\  w  e.  ( 1st `  B ) )  /\  ( v  e.  Q.  /\  ( w  +Q  v
)  e.  ( 1st `  B ) ) )  /\  ( z  e.  ( 1st `  A
)  /\  u  e.  ( 2nd `  A ) ) )  /\  u  <Q  ( z  +Q  v
) )  /\  z  =  w )  ->  w  e.  ( 1st `  A
) )
80 ltaddpr 7538 . . . . . . . . . . . . 13  |-  ( ( A  e.  P.  /\  C  e.  P. )  ->  A  <P  ( A  +P.  C ) )
818, 65, 80syl2anc 409 . . . . . . . . . . . 12  |-  ( A 
<P  B  ->  A  <P  ( A  +P.  C ) )
82 ltprordil 7530 . . . . . . . . . . . . 13  |-  ( A 
<P  ( A  +P.  C
)  ->  ( 1st `  A )  C_  ( 1st `  ( A  +P.  C ) ) )
8382sseld 3141 . . . . . . . . . . . 12  |-  ( A 
<P  ( A  +P.  C
)  ->  ( w  e.  ( 1st `  A
)  ->  w  e.  ( 1st `  ( A  +P.  C ) ) ) )
8481, 83syl 14 . . . . . . . . . . 11  |-  ( A 
<P  B  ->  ( w  e.  ( 1st `  A
)  ->  w  e.  ( 1st `  ( A  +P.  C ) ) ) )
8576, 79, 84sylc 62 . . . . . . . . . 10  |-  ( ( ( ( ( ( A  <P  B  /\  w  e.  ( 1st `  B ) )  /\  ( v  e.  Q.  /\  ( w  +Q  v
)  e.  ( 1st `  B ) ) )  /\  ( z  e.  ( 1st `  A
)  /\  u  e.  ( 2nd `  A ) ) )  /\  u  <Q  ( z  +Q  v
) )  /\  z  =  w )  ->  w  e.  ( 1st `  ( A  +P.  C ) ) )
8685ex 114 . . . . . . . . 9  |-  ( ( ( ( ( A 
<P  B  /\  w  e.  ( 1st `  B
) )  /\  (
v  e.  Q.  /\  ( w  +Q  v
)  e.  ( 1st `  B ) ) )  /\  ( z  e.  ( 1st `  A
)  /\  u  e.  ( 2nd `  A ) ) )  /\  u  <Q  ( z  +Q  v
) )  ->  (
z  =  w  ->  w  e.  ( 1st `  ( A  +P.  C
) ) ) )
87 prcdnql 7425 . . . . . . . . . . . 12  |-  ( (
<. ( 1st `  A
) ,  ( 2nd `  A ) >.  e.  P.  /\  z  e.  ( 1st `  A ) )  -> 
( w  <Q  z  ->  w  e.  ( 1st `  A ) ) )
8810, 87sylan 281 . . . . . . . . . . 11  |-  ( ( A  <P  B  /\  z  e.  ( 1st `  A ) )  -> 
( w  <Q  z  ->  w  e.  ( 1st `  A ) ) )
8915, 16, 88syl2anc 409 . . . . . . . . . 10  |-  ( ( ( ( ( A 
<P  B  /\  w  e.  ( 1st `  B
) )  /\  (
v  e.  Q.  /\  ( w  +Q  v
)  e.  ( 1st `  B ) ) )  /\  ( z  e.  ( 1st `  A
)  /\  u  e.  ( 2nd `  A ) ) )  /\  u  <Q  ( z  +Q  v
) )  ->  (
w  <Q  z  ->  w  e.  ( 1st `  A
) ) )
9015, 89, 84sylsyld 58 . . . . . . . . 9  |-  ( ( ( ( ( A 
<P  B  /\  w  e.  ( 1st `  B
) )  /\  (
v  e.  Q.  /\  ( w  +Q  v
)  e.  ( 1st `  B ) ) )  /\  ( z  e.  ( 1st `  A
)  /\  u  e.  ( 2nd `  A ) ) )  /\  u  <Q  ( z  +Q  v
) )  ->  (
w  <Q  z  ->  w  e.  ( 1st `  ( A  +P.  C ) ) ) )
9175, 86, 903jaod 1294 . . . . . . . 8  |-  ( ( ( ( ( A 
<P  B  /\  w  e.  ( 1st `  B
) )  /\  (
v  e.  Q.  /\  ( w  +Q  v
)  e.  ( 1st `  B ) ) )  /\  ( z  e.  ( 1st `  A
)  /\  u  e.  ( 2nd `  A ) ) )  /\  u  <Q  ( z  +Q  v
) )  ->  (
( z  <Q  w  \/  z  =  w  \/  w  <Q  z )  ->  w  e.  ( 1st `  ( A  +P.  C ) ) ) )
9224, 91mpd 13 . . . . . . 7  |-  ( ( ( ( ( A 
<P  B  /\  w  e.  ( 1st `  B
) )  /\  (
v  e.  Q.  /\  ( w  +Q  v
)  e.  ( 1st `  B ) ) )  /\  ( z  e.  ( 1st `  A
)  /\  u  e.  ( 2nd `  A ) ) )  /\  u  <Q  ( z  +Q  v
) )  ->  w  e.  ( 1st `  ( A  +P.  C ) ) )
9392ex 114 . . . . . 6  |-  ( ( ( ( A  <P  B  /\  w  e.  ( 1st `  B ) )  /\  ( v  e.  Q.  /\  (
w  +Q  v )  e.  ( 1st `  B
) ) )  /\  ( z  e.  ( 1st `  A )  /\  u  e.  ( 2nd `  A ) ) )  ->  (
u  <Q  ( z  +Q  v )  ->  w  e.  ( 1st `  ( A  +P.  C ) ) ) )
9493rexlimdvva 2591 . . . . 5  |-  ( ( ( A  <P  B  /\  w  e.  ( 1st `  B ) )  /\  ( v  e.  Q.  /\  ( w  +Q  v
)  e.  ( 1st `  B ) ) )  ->  ( E. z  e.  ( 1st `  A
) E. u  e.  ( 2nd `  A
) u  <Q  (
z  +Q  v )  ->  w  e.  ( 1st `  ( A  +P.  C ) ) ) )
9513, 94mpd 13 . . . 4  |-  ( ( ( A  <P  B  /\  w  e.  ( 1st `  B ) )  /\  ( v  e.  Q.  /\  ( w  +Q  v
)  e.  ( 1st `  B ) ) )  ->  w  e.  ( 1st `  ( A  +P.  C ) ) )
967, 95rexlimddv 2588 . . 3  |-  ( ( A  <P  B  /\  w  e.  ( 1st `  B ) )  ->  w  e.  ( 1st `  ( A  +P.  C
) ) )
9796ex 114 . 2  |-  ( A 
<P  B  ->  ( w  e.  ( 1st `  B
)  ->  w  e.  ( 1st `  ( A  +P.  C ) ) ) )
9897ssrdv 3148 1  |-  ( A 
<P  B  ->  ( 1st `  B )  C_  ( 1st `  ( A  +P.  C ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    \/ w3o 967    /\ w3a 968    = wceq 1343   E.wex 1480    e. wcel 2136   E.wrex 2445   {crab 2448    C_ wss 3116   <.cop 3579   class class class wbr 3982   ` cfv 5188  (class class class)co 5842   1stc1st 6106   2ndc2nd 6107   Q.cnq 7221    +Q cplq 7223    <Q cltq 7226   P.cnp 7232    +P. cpp 7234    <P cltp 7236
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-coll 4097  ax-sep 4100  ax-nul 4108  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514  ax-iinf 4565
This theorem depends on definitions:  df-bi 116  df-dc 825  df-3or 969  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-ral 2449  df-rex 2450  df-reu 2451  df-rab 2453  df-v 2728  df-sbc 2952  df-csb 3046  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-nul 3410  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-int 3825  df-iun 3868  df-br 3983  df-opab 4044  df-mpt 4045  df-tr 4081  df-eprel 4267  df-id 4271  df-po 4274  df-iso 4275  df-iord 4344  df-on 4346  df-suc 4349  df-iom 4568  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-f1 5193  df-fo 5194  df-f1o 5195  df-fv 5196  df-ov 5845  df-oprab 5846  df-mpo 5847  df-1st 6108  df-2nd 6109  df-recs 6273  df-irdg 6338  df-1o 6384  df-2o 6385  df-oadd 6388  df-omul 6389  df-er 6501  df-ec 6503  df-qs 6507  df-ni 7245  df-pli 7246  df-mi 7247  df-lti 7248  df-plpq 7285  df-mpq 7286  df-enq 7288  df-nqqs 7289  df-plqqs 7290  df-mqqs 7291  df-1nqqs 7292  df-rq 7293  df-ltnqqs 7294  df-enq0 7365  df-nq0 7366  df-0nq0 7367  df-plq0 7368  df-mq0 7369  df-inp 7407  df-iplp 7409  df-iltp 7411
This theorem is referenced by:  ltexpri  7554
  Copyright terms: Public domain W3C validator