ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ltexprlemrl Unicode version

Theorem ltexprlemrl 7694
Description: Lemma for ltexpri 7697. Reverse direction of our result for lower cuts. (Contributed by Jim Kingdon, 17-Dec-2019.)
Hypothesis
Ref Expression
ltexprlem.1  |-  C  = 
<. { x  e.  Q.  |  E. y ( y  e.  ( 2nd `  A
)  /\  ( y  +Q  x )  e.  ( 1st `  B ) ) } ,  {
x  e.  Q.  |  E. y ( y  e.  ( 1st `  A
)  /\  ( y  +Q  x )  e.  ( 2nd `  B ) ) } >.
Assertion
Ref Expression
ltexprlemrl  |-  ( A 
<P  B  ->  ( 1st `  B )  C_  ( 1st `  ( A  +P.  C ) ) )
Distinct variable groups:    x, y, A   
x, B, y    x, C, y

Proof of Theorem ltexprlemrl
Dummy variables  z  w  u  v  f  g  h  s are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ltrelpr 7589 . . . . . . . 8  |-  <P  C_  ( P.  X.  P. )
21brel 4716 . . . . . . 7  |-  ( A 
<P  B  ->  ( A  e.  P.  /\  B  e.  P. ) )
32simprd 114 . . . . . 6  |-  ( A 
<P  B  ->  B  e. 
P. )
4 prop 7559 . . . . . 6  |-  ( B  e.  P.  ->  <. ( 1st `  B ) ,  ( 2nd `  B
) >.  e.  P. )
53, 4syl 14 . . . . 5  |-  ( A 
<P  B  ->  <. ( 1st `  B ) ,  ( 2nd `  B
) >.  e.  P. )
6 prnmaddl 7574 . . . . 5  |-  ( (
<. ( 1st `  B
) ,  ( 2nd `  B ) >.  e.  P.  /\  w  e.  ( 1st `  B ) )  ->  E. v  e.  Q.  ( w  +Q  v
)  e.  ( 1st `  B ) )
75, 6sylan 283 . . . 4  |-  ( ( A  <P  B  /\  w  e.  ( 1st `  B ) )  ->  E. v  e.  Q.  ( w  +Q  v
)  e.  ( 1st `  B ) )
82simpld 112 . . . . . . . 8  |-  ( A 
<P  B  ->  A  e. 
P. )
9 prop 7559 . . . . . . . 8  |-  ( A  e.  P.  ->  <. ( 1st `  A ) ,  ( 2nd `  A
) >.  e.  P. )
108, 9syl 14 . . . . . . 7  |-  ( A 
<P  B  ->  <. ( 1st `  A ) ,  ( 2nd `  A
) >.  e.  P. )
11 prarloc 7587 . . . . . . 7  |-  ( (
<. ( 1st `  A
) ,  ( 2nd `  A ) >.  e.  P.  /\  v  e.  Q. )  ->  E. z  e.  ( 1st `  A ) E. u  e.  ( 2nd `  A ) u  <Q  ( z  +Q  v ) )
1210, 11sylan 283 . . . . . 6  |-  ( ( A  <P  B  /\  v  e.  Q. )  ->  E. z  e.  ( 1st `  A ) E. u  e.  ( 2nd `  A ) u  <Q  ( z  +Q  v ) )
1312ad2ant2r 509 . . . . 5  |-  ( ( ( A  <P  B  /\  w  e.  ( 1st `  B ) )  /\  ( v  e.  Q.  /\  ( w  +Q  v
)  e.  ( 1st `  B ) ) )  ->  E. z  e.  ( 1st `  A ) E. u  e.  ( 2nd `  A ) u  <Q  ( z  +Q  v ) )
14 simplll 533 . . . . . . . . . . 11  |-  ( ( ( ( A  <P  B  /\  w  e.  ( 1st `  B ) )  /\  ( v  e.  Q.  /\  (
w  +Q  v )  e.  ( 1st `  B
) ) )  /\  ( z  e.  ( 1st `  A )  /\  u  e.  ( 2nd `  A ) ) )  ->  A  <P  B )
1514adantr 276 . . . . . . . . . 10  |-  ( ( ( ( ( A 
<P  B  /\  w  e.  ( 1st `  B
) )  /\  (
v  e.  Q.  /\  ( w  +Q  v
)  e.  ( 1st `  B ) ) )  /\  ( z  e.  ( 1st `  A
)  /\  u  e.  ( 2nd `  A ) ) )  /\  u  <Q  ( z  +Q  v
) )  ->  A  <P  B )
16 simplrl 535 . . . . . . . . . 10  |-  ( ( ( ( ( A 
<P  B  /\  w  e.  ( 1st `  B
) )  /\  (
v  e.  Q.  /\  ( w  +Q  v
)  e.  ( 1st `  B ) ) )  /\  ( z  e.  ( 1st `  A
)  /\  u  e.  ( 2nd `  A ) ) )  /\  u  <Q  ( z  +Q  v
) )  ->  z  e.  ( 1st `  A
) )
17 elprnql 7565 . . . . . . . . . . 11  |-  ( (
<. ( 1st `  A
) ,  ( 2nd `  A ) >.  e.  P.  /\  z  e.  ( 1st `  A ) )  -> 
z  e.  Q. )
1810, 17sylan 283 . . . . . . . . . 10  |-  ( ( A  <P  B  /\  z  e.  ( 1st `  A ) )  -> 
z  e.  Q. )
1915, 16, 18syl2anc 411 . . . . . . . . 9  |-  ( ( ( ( ( A 
<P  B  /\  w  e.  ( 1st `  B
) )  /\  (
v  e.  Q.  /\  ( w  +Q  v
)  e.  ( 1st `  B ) ) )  /\  ( z  e.  ( 1st `  A
)  /\  u  e.  ( 2nd `  A ) ) )  /\  u  <Q  ( z  +Q  v
) )  ->  z  e.  Q. )
20 elprnql 7565 . . . . . . . . . . 11  |-  ( (
<. ( 1st `  B
) ,  ( 2nd `  B ) >.  e.  P.  /\  w  e.  ( 1st `  B ) )  ->  w  e.  Q. )
215, 20sylan 283 . . . . . . . . . 10  |-  ( ( A  <P  B  /\  w  e.  ( 1st `  B ) )  ->  w  e.  Q. )
2221ad3antrrr 492 . . . . . . . . 9  |-  ( ( ( ( ( A 
<P  B  /\  w  e.  ( 1st `  B
) )  /\  (
v  e.  Q.  /\  ( w  +Q  v
)  e.  ( 1st `  B ) ) )  /\  ( z  e.  ( 1st `  A
)  /\  u  e.  ( 2nd `  A ) ) )  /\  u  <Q  ( z  +Q  v
) )  ->  w  e.  Q. )
23 nqtri3or 7480 . . . . . . . . 9  |-  ( ( z  e.  Q.  /\  w  e.  Q. )  ->  ( z  <Q  w  \/  z  =  w  \/  w  <Q  z ) )
2419, 22, 23syl2anc 411 . . . . . . . 8  |-  ( ( ( ( ( A 
<P  B  /\  w  e.  ( 1st `  B
) )  /\  (
v  e.  Q.  /\  ( w  +Q  v
)  e.  ( 1st `  B ) ) )  /\  ( z  e.  ( 1st `  A
)  /\  u  e.  ( 2nd `  A ) ) )  /\  u  <Q  ( z  +Q  v
) )  ->  (
z  <Q  w  \/  z  =  w  \/  w  <Q  z ) )
25 ltexnqq 7492 . . . . . . . . . . . . 13  |-  ( ( z  e.  Q.  /\  w  e.  Q. )  ->  ( z  <Q  w  <->  E. s  e.  Q.  (
z  +Q  s )  =  w ) )
2619, 22, 25syl2anc 411 . . . . . . . . . . . 12  |-  ( ( ( ( ( A 
<P  B  /\  w  e.  ( 1st `  B
) )  /\  (
v  e.  Q.  /\  ( w  +Q  v
)  e.  ( 1st `  B ) ) )  /\  ( z  e.  ( 1st `  A
)  /\  u  e.  ( 2nd `  A ) ) )  /\  u  <Q  ( z  +Q  v
) )  ->  (
z  <Q  w  <->  E. s  e.  Q.  ( z  +Q  s )  =  w ) )
2726biimpa 296 . . . . . . . . . . 11  |-  ( ( ( ( ( ( A  <P  B  /\  w  e.  ( 1st `  B ) )  /\  ( v  e.  Q.  /\  ( w  +Q  v
)  e.  ( 1st `  B ) ) )  /\  ( z  e.  ( 1st `  A
)  /\  u  e.  ( 2nd `  A ) ) )  /\  u  <Q  ( z  +Q  v
) )  /\  z  <Q  w )  ->  E. s  e.  Q.  ( z  +Q  s )  =  w )
28 simprr 531 . . . . . . . . . . . 12  |-  ( ( ( ( ( ( ( A  <P  B  /\  w  e.  ( 1st `  B ) )  /\  ( v  e.  Q.  /\  ( w  +Q  v
)  e.  ( 1st `  B ) ) )  /\  ( z  e.  ( 1st `  A
)  /\  u  e.  ( 2nd `  A ) ) )  /\  u  <Q  ( z  +Q  v
) )  /\  z  <Q  w )  /\  (
s  e.  Q.  /\  ( z  +Q  s
)  =  w ) )  ->  ( z  +Q  s )  =  w )
2916ad2antrr 488 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ( ( A  <P  B  /\  w  e.  ( 1st `  B ) )  /\  ( v  e.  Q.  /\  ( w  +Q  v
)  e.  ( 1st `  B ) ) )  /\  ( z  e.  ( 1st `  A
)  /\  u  e.  ( 2nd `  A ) ) )  /\  u  <Q  ( z  +Q  v
) )  /\  z  <Q  w )  /\  (
s  e.  Q.  /\  ( z  +Q  s
)  =  w ) )  ->  z  e.  ( 1st `  A ) )
30 simprl 529 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ( ( A  <P  B  /\  w  e.  ( 1st `  B ) )  /\  ( v  e.  Q.  /\  ( w  +Q  v
)  e.  ( 1st `  B ) ) )  /\  ( z  e.  ( 1st `  A
)  /\  u  e.  ( 2nd `  A ) ) )  /\  u  <Q  ( z  +Q  v
) )  /\  z  <Q  w )  /\  (
s  e.  Q.  /\  ( z  +Q  s
)  =  w ) )  ->  s  e.  Q. )
31 simpr 110 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( A 
<P  B  /\  w  e.  ( 1st `  B
) )  /\  (
v  e.  Q.  /\  ( w  +Q  v
)  e.  ( 1st `  B ) ) )  /\  ( z  e.  ( 1st `  A
)  /\  u  e.  ( 2nd `  A ) ) )  /\  u  <Q  ( z  +Q  v
) )  ->  u  <Q  ( z  +Q  v
) )
32 simplrr 536 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ( A 
<P  B  /\  w  e.  ( 1st `  B
) )  /\  (
v  e.  Q.  /\  ( w  +Q  v
)  e.  ( 1st `  B ) ) )  /\  ( z  e.  ( 1st `  A
)  /\  u  e.  ( 2nd `  A ) ) )  /\  u  <Q  ( z  +Q  v
) )  ->  u  e.  ( 2nd `  A
) )
33 prcunqu 7569 . . . . . . . . . . . . . . . . . . 19  |-  ( (
<. ( 1st `  A
) ,  ( 2nd `  A ) >.  e.  P.  /\  u  e.  ( 2nd `  A ) )  -> 
( u  <Q  (
z  +Q  v )  ->  ( z  +Q  v )  e.  ( 2nd `  A ) ) )
3410, 33sylan 283 . . . . . . . . . . . . . . . . . 18  |-  ( ( A  <P  B  /\  u  e.  ( 2nd `  A ) )  -> 
( u  <Q  (
z  +Q  v )  ->  ( z  +Q  v )  e.  ( 2nd `  A ) ) )
3515, 32, 34syl2anc 411 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( A 
<P  B  /\  w  e.  ( 1st `  B
) )  /\  (
v  e.  Q.  /\  ( w  +Q  v
)  e.  ( 1st `  B ) ) )  /\  ( z  e.  ( 1st `  A
)  /\  u  e.  ( 2nd `  A ) ) )  /\  u  <Q  ( z  +Q  v
) )  ->  (
u  <Q  ( z  +Q  v )  ->  (
z  +Q  v )  e.  ( 2nd `  A
) ) )
3631, 35mpd 13 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( A 
<P  B  /\  w  e.  ( 1st `  B
) )  /\  (
v  e.  Q.  /\  ( w  +Q  v
)  e.  ( 1st `  B ) ) )  /\  ( z  e.  ( 1st `  A
)  /\  u  e.  ( 2nd `  A ) ) )  /\  u  <Q  ( z  +Q  v
) )  ->  (
z  +Q  v )  e.  ( 2nd `  A
) )
3736ad2antrr 488 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ( ( A  <P  B  /\  w  e.  ( 1st `  B ) )  /\  ( v  e.  Q.  /\  ( w  +Q  v
)  e.  ( 1st `  B ) ) )  /\  ( z  e.  ( 1st `  A
)  /\  u  e.  ( 2nd `  A ) ) )  /\  u  <Q  ( z  +Q  v
) )  /\  z  <Q  w )  /\  (
s  e.  Q.  /\  ( z  +Q  s
)  =  w ) )  ->  ( z  +Q  v )  e.  ( 2nd `  A ) )
3819ad2antrr 488 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( ( ( A  <P  B  /\  w  e.  ( 1st `  B ) )  /\  ( v  e.  Q.  /\  ( w  +Q  v
)  e.  ( 1st `  B ) ) )  /\  ( z  e.  ( 1st `  A
)  /\  u  e.  ( 2nd `  A ) ) )  /\  u  <Q  ( z  +Q  v
) )  /\  z  <Q  w )  /\  (
s  e.  Q.  /\  ( z  +Q  s
)  =  w ) )  ->  z  e.  Q. )
39 simplrl 535 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( A  <P  B  /\  w  e.  ( 1st `  B ) )  /\  ( v  e.  Q.  /\  (
w  +Q  v )  e.  ( 1st `  B
) ) )  /\  ( z  e.  ( 1st `  A )  /\  u  e.  ( 2nd `  A ) ) )  ->  v  e.  Q. )
4039ad3antrrr 492 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( ( ( A  <P  B  /\  w  e.  ( 1st `  B ) )  /\  ( v  e.  Q.  /\  ( w  +Q  v
)  e.  ( 1st `  B ) ) )  /\  ( z  e.  ( 1st `  A
)  /\  u  e.  ( 2nd `  A ) ) )  /\  u  <Q  ( z  +Q  v
) )  /\  z  <Q  w )  /\  (
s  e.  Q.  /\  ( z  +Q  s
)  =  w ) )  ->  v  e.  Q. )
41 addcomnqg 7465 . . . . . . . . . . . . . . . . . 18  |-  ( ( f  e.  Q.  /\  g  e.  Q. )  ->  ( f  +Q  g
)  =  ( g  +Q  f ) )
4241adantl 277 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( ( ( ( A  <P  B  /\  w  e.  ( 1st `  B ) )  /\  ( v  e.  Q.  /\  (
w  +Q  v )  e.  ( 1st `  B
) ) )  /\  ( z  e.  ( 1st `  A )  /\  u  e.  ( 2nd `  A ) ) )  /\  u  <Q  ( z  +Q  v
) )  /\  z  <Q  w )  /\  (
s  e.  Q.  /\  ( z  +Q  s
)  =  w ) )  /\  ( f  e.  Q.  /\  g  e.  Q. ) )  -> 
( f  +Q  g
)  =  ( g  +Q  f ) )
43 addassnqg 7466 . . . . . . . . . . . . . . . . . 18  |-  ( ( f  e.  Q.  /\  g  e.  Q.  /\  h  e.  Q. )  ->  (
( f  +Q  g
)  +Q  h )  =  ( f  +Q  ( g  +Q  h
) ) )
4443adantl 277 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( ( ( ( A  <P  B  /\  w  e.  ( 1st `  B ) )  /\  ( v  e.  Q.  /\  (
w  +Q  v )  e.  ( 1st `  B
) ) )  /\  ( z  e.  ( 1st `  A )  /\  u  e.  ( 2nd `  A ) ) )  /\  u  <Q  ( z  +Q  v
) )  /\  z  <Q  w )  /\  (
s  e.  Q.  /\  ( z  +Q  s
)  =  w ) )  /\  ( f  e.  Q.  /\  g  e.  Q.  /\  h  e. 
Q. ) )  -> 
( ( f  +Q  g )  +Q  h
)  =  ( f  +Q  ( g  +Q  h ) ) )
4538, 40, 30, 42, 44caov32d 6108 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( ( ( A  <P  B  /\  w  e.  ( 1st `  B ) )  /\  ( v  e.  Q.  /\  ( w  +Q  v
)  e.  ( 1st `  B ) ) )  /\  ( z  e.  ( 1st `  A
)  /\  u  e.  ( 2nd `  A ) ) )  /\  u  <Q  ( z  +Q  v
) )  /\  z  <Q  w )  /\  (
s  e.  Q.  /\  ( z  +Q  s
)  =  w ) )  ->  ( (
z  +Q  v )  +Q  s )  =  ( ( z  +Q  s )  +Q  v
) )
46 simplrr 536 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( A  <P  B  /\  w  e.  ( 1st `  B ) )  /\  ( v  e.  Q.  /\  (
w  +Q  v )  e.  ( 1st `  B
) ) )  /\  ( z  e.  ( 1st `  A )  /\  u  e.  ( 2nd `  A ) ) )  ->  (
w  +Q  v )  e.  ( 1st `  B
) )
4746ad3antrrr 492 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( ( ( A  <P  B  /\  w  e.  ( 1st `  B ) )  /\  ( v  e.  Q.  /\  ( w  +Q  v
)  e.  ( 1st `  B ) ) )  /\  ( z  e.  ( 1st `  A
)  /\  u  e.  ( 2nd `  A ) ) )  /\  u  <Q  ( z  +Q  v
) )  /\  z  <Q  w )  /\  (
s  e.  Q.  /\  ( z  +Q  s
)  =  w ) )  ->  ( w  +Q  v )  e.  ( 1st `  B ) )
48 oveq1 5932 . . . . . . . . . . . . . . . . . . 19  |-  ( ( z  +Q  s )  =  w  ->  (
( z  +Q  s
)  +Q  v )  =  ( w  +Q  v ) )
4948eleq1d 2265 . . . . . . . . . . . . . . . . . 18  |-  ( ( z  +Q  s )  =  w  ->  (
( ( z  +Q  s )  +Q  v
)  e.  ( 1st `  B )  <->  ( w  +Q  v )  e.  ( 1st `  B ) ) )
5028, 49syl 14 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( ( ( A  <P  B  /\  w  e.  ( 1st `  B ) )  /\  ( v  e.  Q.  /\  ( w  +Q  v
)  e.  ( 1st `  B ) ) )  /\  ( z  e.  ( 1st `  A
)  /\  u  e.  ( 2nd `  A ) ) )  /\  u  <Q  ( z  +Q  v
) )  /\  z  <Q  w )  /\  (
s  e.  Q.  /\  ( z  +Q  s
)  =  w ) )  ->  ( (
( z  +Q  s
)  +Q  v )  e.  ( 1st `  B
)  <->  ( w  +Q  v )  e.  ( 1st `  B ) ) )
5147, 50mpbird 167 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( ( ( A  <P  B  /\  w  e.  ( 1st `  B ) )  /\  ( v  e.  Q.  /\  ( w  +Q  v
)  e.  ( 1st `  B ) ) )  /\  ( z  e.  ( 1st `  A
)  /\  u  e.  ( 2nd `  A ) ) )  /\  u  <Q  ( z  +Q  v
) )  /\  z  <Q  w )  /\  (
s  e.  Q.  /\  ( z  +Q  s
)  =  w ) )  ->  ( (
z  +Q  s )  +Q  v )  e.  ( 1st `  B
) )
5245, 51eqeltrd 2273 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ( ( A  <P  B  /\  w  e.  ( 1st `  B ) )  /\  ( v  e.  Q.  /\  ( w  +Q  v
)  e.  ( 1st `  B ) ) )  /\  ( z  e.  ( 1st `  A
)  /\  u  e.  ( 2nd `  A ) ) )  /\  u  <Q  ( z  +Q  v
) )  /\  z  <Q  w )  /\  (
s  e.  Q.  /\  ( z  +Q  s
)  =  w ) )  ->  ( (
z  +Q  v )  +Q  s )  e.  ( 1st `  B
) )
53 eleq1 2259 . . . . . . . . . . . . . . . . . 18  |-  ( y  =  ( z  +Q  v )  ->  (
y  e.  ( 2nd `  A )  <->  ( z  +Q  v )  e.  ( 2nd `  A ) ) )
54 oveq1 5932 . . . . . . . . . . . . . . . . . . 19  |-  ( y  =  ( z  +Q  v )  ->  (
y  +Q  s )  =  ( ( z  +Q  v )  +Q  s ) )
5554eleq1d 2265 . . . . . . . . . . . . . . . . . 18  |-  ( y  =  ( z  +Q  v )  ->  (
( y  +Q  s
)  e.  ( 1st `  B )  <->  ( (
z  +Q  v )  +Q  s )  e.  ( 1st `  B
) ) )
5653, 55anbi12d 473 . . . . . . . . . . . . . . . . 17  |-  ( y  =  ( z  +Q  v )  ->  (
( y  e.  ( 2nd `  A )  /\  ( y  +Q  s )  e.  ( 1st `  B ) )  <->  ( ( z  +Q  v )  e.  ( 2nd `  A
)  /\  ( (
z  +Q  v )  +Q  s )  e.  ( 1st `  B
) ) ) )
5756spcegv 2852 . . . . . . . . . . . . . . . 16  |-  ( ( z  +Q  v )  e.  ( 2nd `  A
)  ->  ( (
( z  +Q  v
)  e.  ( 2nd `  A )  /\  (
( z  +Q  v
)  +Q  s )  e.  ( 1st `  B
) )  ->  E. y
( y  e.  ( 2nd `  A )  /\  ( y  +Q  s )  e.  ( 1st `  B ) ) ) )
5857anabsi5 579 . . . . . . . . . . . . . . 15  |-  ( ( ( z  +Q  v
)  e.  ( 2nd `  A )  /\  (
( z  +Q  v
)  +Q  s )  e.  ( 1st `  B
) )  ->  E. y
( y  e.  ( 2nd `  A )  /\  ( y  +Q  s )  e.  ( 1st `  B ) ) )
5937, 52, 58syl2anc 411 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ( ( A  <P  B  /\  w  e.  ( 1st `  B ) )  /\  ( v  e.  Q.  /\  ( w  +Q  v
)  e.  ( 1st `  B ) ) )  /\  ( z  e.  ( 1st `  A
)  /\  u  e.  ( 2nd `  A ) ) )  /\  u  <Q  ( z  +Q  v
) )  /\  z  <Q  w )  /\  (
s  e.  Q.  /\  ( z  +Q  s
)  =  w ) )  ->  E. y
( y  e.  ( 2nd `  A )  /\  ( y  +Q  s )  e.  ( 1st `  B ) ) )
60 ltexprlem.1 . . . . . . . . . . . . . . 15  |-  C  = 
<. { x  e.  Q.  |  E. y ( y  e.  ( 2nd `  A
)  /\  ( y  +Q  x )  e.  ( 1st `  B ) ) } ,  {
x  e.  Q.  |  E. y ( y  e.  ( 1st `  A
)  /\  ( y  +Q  x )  e.  ( 2nd `  B ) ) } >.
6160ltexprlemell 7682 . . . . . . . . . . . . . 14  |-  ( s  e.  ( 1st `  C
)  <->  ( s  e. 
Q.  /\  E. y
( y  e.  ( 2nd `  A )  /\  ( y  +Q  s )  e.  ( 1st `  B ) ) ) )
6230, 59, 61sylanbrc 417 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ( ( A  <P  B  /\  w  e.  ( 1st `  B ) )  /\  ( v  e.  Q.  /\  ( w  +Q  v
)  e.  ( 1st `  B ) ) )  /\  ( z  e.  ( 1st `  A
)  /\  u  e.  ( 2nd `  A ) ) )  /\  u  <Q  ( z  +Q  v
) )  /\  z  <Q  w )  /\  (
s  e.  Q.  /\  ( z  +Q  s
)  =  w ) )  ->  s  e.  ( 1st `  C ) )
6315, 8syl 14 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( A 
<P  B  /\  w  e.  ( 1st `  B
) )  /\  (
v  e.  Q.  /\  ( w  +Q  v
)  e.  ( 1st `  B ) ) )  /\  ( z  e.  ( 1st `  A
)  /\  u  e.  ( 2nd `  A ) ) )  /\  u  <Q  ( z  +Q  v
) )  ->  A  e.  P. )
6463ad2antrr 488 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ( ( A  <P  B  /\  w  e.  ( 1st `  B ) )  /\  ( v  e.  Q.  /\  ( w  +Q  v
)  e.  ( 1st `  B ) ) )  /\  ( z  e.  ( 1st `  A
)  /\  u  e.  ( 2nd `  A ) ) )  /\  u  <Q  ( z  +Q  v
) )  /\  z  <Q  w )  /\  (
s  e.  Q.  /\  ( z  +Q  s
)  =  w ) )  ->  A  e.  P. )
6560ltexprlempr 7692 . . . . . . . . . . . . . . . 16  |-  ( A 
<P  B  ->  C  e. 
P. )
6615, 65syl 14 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( A 
<P  B  /\  w  e.  ( 1st `  B
) )  /\  (
v  e.  Q.  /\  ( w  +Q  v
)  e.  ( 1st `  B ) ) )  /\  ( z  e.  ( 1st `  A
)  /\  u  e.  ( 2nd `  A ) ) )  /\  u  <Q  ( z  +Q  v
) )  ->  C  e.  P. )
6766ad2antrr 488 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ( ( A  <P  B  /\  w  e.  ( 1st `  B ) )  /\  ( v  e.  Q.  /\  ( w  +Q  v
)  e.  ( 1st `  B ) ) )  /\  ( z  e.  ( 1st `  A
)  /\  u  e.  ( 2nd `  A ) ) )  /\  u  <Q  ( z  +Q  v
) )  /\  z  <Q  w )  /\  (
s  e.  Q.  /\  ( z  +Q  s
)  =  w ) )  ->  C  e.  P. )
68 df-iplp 7552 . . . . . . . . . . . . . . 15  |-  +P.  =  ( x  e.  P. ,  w  e.  P.  |->  <. { z  e.  Q.  |  E. f  e.  Q.  E. v  e.  Q.  (
f  e.  ( 1st `  x )  /\  v  e.  ( 1st `  w
)  /\  z  =  ( f  +Q  v
) ) } ,  { z  e.  Q.  |  E. f  e.  Q.  E. v  e.  Q.  (
f  e.  ( 2nd `  x )  /\  v  e.  ( 2nd `  w
)  /\  z  =  ( f  +Q  v
) ) } >. )
69 addclnq 7459 . . . . . . . . . . . . . . 15  |-  ( ( f  e.  Q.  /\  v  e.  Q. )  ->  ( f  +Q  v
)  e.  Q. )
7068, 69genpprecll 7598 . . . . . . . . . . . . . 14  |-  ( ( A  e.  P.  /\  C  e.  P. )  ->  ( ( z  e.  ( 1st `  A
)  /\  s  e.  ( 1st `  C ) )  ->  ( z  +Q  s )  e.  ( 1st `  ( A  +P.  C ) ) ) )
7164, 67, 70syl2anc 411 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ( ( A  <P  B  /\  w  e.  ( 1st `  B ) )  /\  ( v  e.  Q.  /\  ( w  +Q  v
)  e.  ( 1st `  B ) ) )  /\  ( z  e.  ( 1st `  A
)  /\  u  e.  ( 2nd `  A ) ) )  /\  u  <Q  ( z  +Q  v
) )  /\  z  <Q  w )  /\  (
s  e.  Q.  /\  ( z  +Q  s
)  =  w ) )  ->  ( (
z  e.  ( 1st `  A )  /\  s  e.  ( 1st `  C
) )  ->  (
z  +Q  s )  e.  ( 1st `  ( A  +P.  C ) ) ) )
7229, 62, 71mp2and 433 . . . . . . . . . . . 12  |-  ( ( ( ( ( ( ( A  <P  B  /\  w  e.  ( 1st `  B ) )  /\  ( v  e.  Q.  /\  ( w  +Q  v
)  e.  ( 1st `  B ) ) )  /\  ( z  e.  ( 1st `  A
)  /\  u  e.  ( 2nd `  A ) ) )  /\  u  <Q  ( z  +Q  v
) )  /\  z  <Q  w )  /\  (
s  e.  Q.  /\  ( z  +Q  s
)  =  w ) )  ->  ( z  +Q  s )  e.  ( 1st `  ( A  +P.  C ) ) )
7328, 72eqeltrrd 2274 . . . . . . . . . . 11  |-  ( ( ( ( ( ( ( A  <P  B  /\  w  e.  ( 1st `  B ) )  /\  ( v  e.  Q.  /\  ( w  +Q  v
)  e.  ( 1st `  B ) ) )  /\  ( z  e.  ( 1st `  A
)  /\  u  e.  ( 2nd `  A ) ) )  /\  u  <Q  ( z  +Q  v
) )  /\  z  <Q  w )  /\  (
s  e.  Q.  /\  ( z  +Q  s
)  =  w ) )  ->  w  e.  ( 1st `  ( A  +P.  C ) ) )
7427, 73rexlimddv 2619 . . . . . . . . . 10  |-  ( ( ( ( ( ( A  <P  B  /\  w  e.  ( 1st `  B ) )  /\  ( v  e.  Q.  /\  ( w  +Q  v
)  e.  ( 1st `  B ) ) )  /\  ( z  e.  ( 1st `  A
)  /\  u  e.  ( 2nd `  A ) ) )  /\  u  <Q  ( z  +Q  v
) )  /\  z  <Q  w )  ->  w  e.  ( 1st `  ( A  +P.  C ) ) )
7574ex 115 . . . . . . . . 9  |-  ( ( ( ( ( A 
<P  B  /\  w  e.  ( 1st `  B
) )  /\  (
v  e.  Q.  /\  ( w  +Q  v
)  e.  ( 1st `  B ) ) )  /\  ( z  e.  ( 1st `  A
)  /\  u  e.  ( 2nd `  A ) ) )  /\  u  <Q  ( z  +Q  v
) )  ->  (
z  <Q  w  ->  w  e.  ( 1st `  ( A  +P.  C ) ) ) )
7614ad2antrr 488 . . . . . . . . . . 11  |-  ( ( ( ( ( ( A  <P  B  /\  w  e.  ( 1st `  B ) )  /\  ( v  e.  Q.  /\  ( w  +Q  v
)  e.  ( 1st `  B ) ) )  /\  ( z  e.  ( 1st `  A
)  /\  u  e.  ( 2nd `  A ) ) )  /\  u  <Q  ( z  +Q  v
) )  /\  z  =  w )  ->  A  <P  B )
77 simpr 110 . . . . . . . . . . . 12  |-  ( ( ( ( ( ( A  <P  B  /\  w  e.  ( 1st `  B ) )  /\  ( v  e.  Q.  /\  ( w  +Q  v
)  e.  ( 1st `  B ) ) )  /\  ( z  e.  ( 1st `  A
)  /\  u  e.  ( 2nd `  A ) ) )  /\  u  <Q  ( z  +Q  v
) )  /\  z  =  w )  ->  z  =  w )
7816adantr 276 . . . . . . . . . . . 12  |-  ( ( ( ( ( ( A  <P  B  /\  w  e.  ( 1st `  B ) )  /\  ( v  e.  Q.  /\  ( w  +Q  v
)  e.  ( 1st `  B ) ) )  /\  ( z  e.  ( 1st `  A
)  /\  u  e.  ( 2nd `  A ) ) )  /\  u  <Q  ( z  +Q  v
) )  /\  z  =  w )  ->  z  e.  ( 1st `  A
) )
7977, 78eqeltrrd 2274 . . . . . . . . . . 11  |-  ( ( ( ( ( ( A  <P  B  /\  w  e.  ( 1st `  B ) )  /\  ( v  e.  Q.  /\  ( w  +Q  v
)  e.  ( 1st `  B ) ) )  /\  ( z  e.  ( 1st `  A
)  /\  u  e.  ( 2nd `  A ) ) )  /\  u  <Q  ( z  +Q  v
) )  /\  z  =  w )  ->  w  e.  ( 1st `  A
) )
80 ltaddpr 7681 . . . . . . . . . . . . 13  |-  ( ( A  e.  P.  /\  C  e.  P. )  ->  A  <P  ( A  +P.  C ) )
818, 65, 80syl2anc 411 . . . . . . . . . . . 12  |-  ( A 
<P  B  ->  A  <P  ( A  +P.  C ) )
82 ltprordil 7673 . . . . . . . . . . . . 13  |-  ( A 
<P  ( A  +P.  C
)  ->  ( 1st `  A )  C_  ( 1st `  ( A  +P.  C ) ) )
8382sseld 3183 . . . . . . . . . . . 12  |-  ( A 
<P  ( A  +P.  C
)  ->  ( w  e.  ( 1st `  A
)  ->  w  e.  ( 1st `  ( A  +P.  C ) ) ) )
8481, 83syl 14 . . . . . . . . . . 11  |-  ( A 
<P  B  ->  ( w  e.  ( 1st `  A
)  ->  w  e.  ( 1st `  ( A  +P.  C ) ) ) )
8576, 79, 84sylc 62 . . . . . . . . . 10  |-  ( ( ( ( ( ( A  <P  B  /\  w  e.  ( 1st `  B ) )  /\  ( v  e.  Q.  /\  ( w  +Q  v
)  e.  ( 1st `  B ) ) )  /\  ( z  e.  ( 1st `  A
)  /\  u  e.  ( 2nd `  A ) ) )  /\  u  <Q  ( z  +Q  v
) )  /\  z  =  w )  ->  w  e.  ( 1st `  ( A  +P.  C ) ) )
8685ex 115 . . . . . . . . 9  |-  ( ( ( ( ( A 
<P  B  /\  w  e.  ( 1st `  B
) )  /\  (
v  e.  Q.  /\  ( w  +Q  v
)  e.  ( 1st `  B ) ) )  /\  ( z  e.  ( 1st `  A
)  /\  u  e.  ( 2nd `  A ) ) )  /\  u  <Q  ( z  +Q  v
) )  ->  (
z  =  w  ->  w  e.  ( 1st `  ( A  +P.  C
) ) ) )
87 prcdnql 7568 . . . . . . . . . . . 12  |-  ( (
<. ( 1st `  A
) ,  ( 2nd `  A ) >.  e.  P.  /\  z  e.  ( 1st `  A ) )  -> 
( w  <Q  z  ->  w  e.  ( 1st `  A ) ) )
8810, 87sylan 283 . . . . . . . . . . 11  |-  ( ( A  <P  B  /\  z  e.  ( 1st `  A ) )  -> 
( w  <Q  z  ->  w  e.  ( 1st `  A ) ) )
8915, 16, 88syl2anc 411 . . . . . . . . . 10  |-  ( ( ( ( ( A 
<P  B  /\  w  e.  ( 1st `  B
) )  /\  (
v  e.  Q.  /\  ( w  +Q  v
)  e.  ( 1st `  B ) ) )  /\  ( z  e.  ( 1st `  A
)  /\  u  e.  ( 2nd `  A ) ) )  /\  u  <Q  ( z  +Q  v
) )  ->  (
w  <Q  z  ->  w  e.  ( 1st `  A
) ) )
9015, 89, 84sylsyld 58 . . . . . . . . 9  |-  ( ( ( ( ( A 
<P  B  /\  w  e.  ( 1st `  B
) )  /\  (
v  e.  Q.  /\  ( w  +Q  v
)  e.  ( 1st `  B ) ) )  /\  ( z  e.  ( 1st `  A
)  /\  u  e.  ( 2nd `  A ) ) )  /\  u  <Q  ( z  +Q  v
) )  ->  (
w  <Q  z  ->  w  e.  ( 1st `  ( A  +P.  C ) ) ) )
9175, 86, 903jaod 1315 . . . . . . . 8  |-  ( ( ( ( ( A 
<P  B  /\  w  e.  ( 1st `  B
) )  /\  (
v  e.  Q.  /\  ( w  +Q  v
)  e.  ( 1st `  B ) ) )  /\  ( z  e.  ( 1st `  A
)  /\  u  e.  ( 2nd `  A ) ) )  /\  u  <Q  ( z  +Q  v
) )  ->  (
( z  <Q  w  \/  z  =  w  \/  w  <Q  z )  ->  w  e.  ( 1st `  ( A  +P.  C ) ) ) )
9224, 91mpd 13 . . . . . . 7  |-  ( ( ( ( ( A 
<P  B  /\  w  e.  ( 1st `  B
) )  /\  (
v  e.  Q.  /\  ( w  +Q  v
)  e.  ( 1st `  B ) ) )  /\  ( z  e.  ( 1st `  A
)  /\  u  e.  ( 2nd `  A ) ) )  /\  u  <Q  ( z  +Q  v
) )  ->  w  e.  ( 1st `  ( A  +P.  C ) ) )
9392ex 115 . . . . . 6  |-  ( ( ( ( A  <P  B  /\  w  e.  ( 1st `  B ) )  /\  ( v  e.  Q.  /\  (
w  +Q  v )  e.  ( 1st `  B
) ) )  /\  ( z  e.  ( 1st `  A )  /\  u  e.  ( 2nd `  A ) ) )  ->  (
u  <Q  ( z  +Q  v )  ->  w  e.  ( 1st `  ( A  +P.  C ) ) ) )
9493rexlimdvva 2622 . . . . 5  |-  ( ( ( A  <P  B  /\  w  e.  ( 1st `  B ) )  /\  ( v  e.  Q.  /\  ( w  +Q  v
)  e.  ( 1st `  B ) ) )  ->  ( E. z  e.  ( 1st `  A
) E. u  e.  ( 2nd `  A
) u  <Q  (
z  +Q  v )  ->  w  e.  ( 1st `  ( A  +P.  C ) ) ) )
9513, 94mpd 13 . . . 4  |-  ( ( ( A  <P  B  /\  w  e.  ( 1st `  B ) )  /\  ( v  e.  Q.  /\  ( w  +Q  v
)  e.  ( 1st `  B ) ) )  ->  w  e.  ( 1st `  ( A  +P.  C ) ) )
967, 95rexlimddv 2619 . . 3  |-  ( ( A  <P  B  /\  w  e.  ( 1st `  B ) )  ->  w  e.  ( 1st `  ( A  +P.  C
) ) )
9796ex 115 . 2  |-  ( A 
<P  B  ->  ( w  e.  ( 1st `  B
)  ->  w  e.  ( 1st `  ( A  +P.  C ) ) ) )
9897ssrdv 3190 1  |-  ( A 
<P  B  ->  ( 1st `  B )  C_  ( 1st `  ( A  +P.  C ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    \/ w3o 979    /\ w3a 980    = wceq 1364   E.wex 1506    e. wcel 2167   E.wrex 2476   {crab 2479    C_ wss 3157   <.cop 3626   class class class wbr 4034   ` cfv 5259  (class class class)co 5925   1stc1st 6205   2ndc2nd 6206   Q.cnq 7364    +Q cplq 7366    <Q cltq 7369   P.cnp 7375    +P. cpp 7377    <P cltp 7379
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4149  ax-sep 4152  ax-nul 4160  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-iinf 4625
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-ral 2480  df-rex 2481  df-reu 2482  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3452  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-iun 3919  df-br 4035  df-opab 4096  df-mpt 4097  df-tr 4133  df-eprel 4325  df-id 4329  df-po 4332  df-iso 4333  df-iord 4402  df-on 4404  df-suc 4407  df-iom 4628  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-f1 5264  df-fo 5265  df-f1o 5266  df-fv 5267  df-ov 5928  df-oprab 5929  df-mpo 5930  df-1st 6207  df-2nd 6208  df-recs 6372  df-irdg 6437  df-1o 6483  df-2o 6484  df-oadd 6487  df-omul 6488  df-er 6601  df-ec 6603  df-qs 6607  df-ni 7388  df-pli 7389  df-mi 7390  df-lti 7391  df-plpq 7428  df-mpq 7429  df-enq 7431  df-nqqs 7432  df-plqqs 7433  df-mqqs 7434  df-1nqqs 7435  df-rq 7436  df-ltnqqs 7437  df-enq0 7508  df-nq0 7509  df-0nq0 7510  df-plq0 7511  df-mq0 7512  df-inp 7550  df-iplp 7552  df-iltp 7554
This theorem is referenced by:  ltexpri  7697
  Copyright terms: Public domain W3C validator