| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > elfz0ubfz0 | Unicode version | ||
| Description: An element of a finite set of sequential nonnegative integers is an element of a finite set of sequential nonnegative integers with the upper bound being an element of the finite set of sequential nonnegative integers with the same lower bound as for the first interval and the element under consideration as upper bound. (Contributed by Alexander van der Vekens, 3-Apr-2018.) |
| Ref | Expression |
|---|---|
| elfz0ubfz0 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elfz2nn0 10204 |
. . . 4
| |
| 2 | elfz2 10107 |
. . . . . 6
| |
| 3 | simpr1 1005 |
. . . . . . . 8
| |
| 4 | elnn0z 9356 |
. . . . . . . . . . . . . . . . 17
| |
| 5 | simpr 110 |
. . . . . . . . . . . . . . . . . . . 20
| |
| 6 | 0z 9354 |
. . . . . . . . . . . . . . . . . . . . 21
| |
| 7 | zletr 9392 |
. . . . . . . . . . . . . . . . . . . . 21
| |
| 8 | 6, 7 | mp3an1 1335 |
. . . . . . . . . . . . . . . . . . . 20
|
| 9 | elnn0z 9356 |
. . . . . . . . . . . . . . . . . . . . 21
| |
| 10 | 9 | simplbi2 385 |
. . . . . . . . . . . . . . . . . . . 20
|
| 11 | 5, 8, 10 | sylsyld 58 |
. . . . . . . . . . . . . . . . . . 19
|
| 12 | 11 | expd 258 |
. . . . . . . . . . . . . . . . . 18
|
| 13 | 12 | impancom 260 |
. . . . . . . . . . . . . . . . 17
|
| 14 | 4, 13 | sylbi 121 |
. . . . . . . . . . . . . . . 16
|
| 15 | 14 | com13 80 |
. . . . . . . . . . . . . . 15
|
| 16 | 15 | adantr 276 |
. . . . . . . . . . . . . 14
|
| 17 | 16 | com12 30 |
. . . . . . . . . . . . 13
|
| 18 | 17 | 3ad2ant3 1022 |
. . . . . . . . . . . 12
|
| 19 | 18 | imp 124 |
. . . . . . . . . . 11
|
| 20 | 19 | com12 30 |
. . . . . . . . . 10
|
| 21 | 20 | 3ad2ant1 1020 |
. . . . . . . . 9
|
| 22 | 21 | impcom 125 |
. . . . . . . 8
|
| 23 | simplrl 535 |
. . . . . . . 8
| |
| 24 | 3, 22, 23 | 3jca 1179 |
. . . . . . 7
|
| 25 | 24 | ex 115 |
. . . . . 6
|
| 26 | 2, 25 | sylbi 121 |
. . . . 5
|
| 27 | 26 | com12 30 |
. . . 4
|
| 28 | 1, 27 | sylbi 121 |
. . 3
|
| 29 | 28 | imp 124 |
. 2
|
| 30 | elfz2nn0 10204 |
. 2
| |
| 31 | 29, 30 | sylibr 134 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4152 ax-pow 4208 ax-pr 4243 ax-un 4469 ax-setind 4574 ax-cnex 7987 ax-resscn 7988 ax-1cn 7989 ax-1re 7990 ax-icn 7991 ax-addcl 7992 ax-addrcl 7993 ax-mulcl 7994 ax-addcom 7996 ax-addass 7998 ax-distr 8000 ax-i2m1 8001 ax-0lt1 8002 ax-0id 8004 ax-rnegex 8005 ax-cnre 8007 ax-pre-ltirr 8008 ax-pre-ltwlin 8009 ax-pre-lttrn 8010 ax-pre-ltadd 8012 |
| This theorem depends on definitions: df-bi 117 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-reu 2482 df-rab 2484 df-v 2765 df-sbc 2990 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-int 3876 df-br 4035 df-opab 4096 df-mpt 4097 df-id 4329 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-rn 4675 df-res 4676 df-ima 4677 df-iota 5220 df-fun 5261 df-fn 5262 df-f 5263 df-fv 5267 df-riota 5880 df-ov 5928 df-oprab 5929 df-mpo 5930 df-pnf 8080 df-mnf 8081 df-xr 8082 df-ltxr 8083 df-le 8084 df-sub 8216 df-neg 8217 df-inn 9008 df-n0 9267 df-z 9344 df-uz 9619 df-fz 10101 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |