| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > elfz0ubfz0 | Unicode version | ||
| Description: An element of a finite set of sequential nonnegative integers is an element of a finite set of sequential nonnegative integers with the upper bound being an element of the finite set of sequential nonnegative integers with the same lower bound as for the first interval and the element under consideration as upper bound. (Contributed by Alexander van der Vekens, 3-Apr-2018.) |
| Ref | Expression |
|---|---|
| elfz0ubfz0 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elfz2nn0 10269 |
. . . 4
| |
| 2 | elfz2 10172 |
. . . . . 6
| |
| 3 | simpr1 1006 |
. . . . . . . 8
| |
| 4 | elnn0z 9420 |
. . . . . . . . . . . . . . . . 17
| |
| 5 | simpr 110 |
. . . . . . . . . . . . . . . . . . . 20
| |
| 6 | 0z 9418 |
. . . . . . . . . . . . . . . . . . . . 21
| |
| 7 | zletr 9457 |
. . . . . . . . . . . . . . . . . . . . 21
| |
| 8 | 6, 7 | mp3an1 1337 |
. . . . . . . . . . . . . . . . . . . 20
|
| 9 | elnn0z 9420 |
. . . . . . . . . . . . . . . . . . . . 21
| |
| 10 | 9 | simplbi2 385 |
. . . . . . . . . . . . . . . . . . . 20
|
| 11 | 5, 8, 10 | sylsyld 58 |
. . . . . . . . . . . . . . . . . . 19
|
| 12 | 11 | expd 258 |
. . . . . . . . . . . . . . . . . 18
|
| 13 | 12 | impancom 260 |
. . . . . . . . . . . . . . . . 17
|
| 14 | 4, 13 | sylbi 121 |
. . . . . . . . . . . . . . . 16
|
| 15 | 14 | com13 80 |
. . . . . . . . . . . . . . 15
|
| 16 | 15 | adantr 276 |
. . . . . . . . . . . . . 14
|
| 17 | 16 | com12 30 |
. . . . . . . . . . . . 13
|
| 18 | 17 | 3ad2ant3 1023 |
. . . . . . . . . . . 12
|
| 19 | 18 | imp 124 |
. . . . . . . . . . 11
|
| 20 | 19 | com12 30 |
. . . . . . . . . 10
|
| 21 | 20 | 3ad2ant1 1021 |
. . . . . . . . 9
|
| 22 | 21 | impcom 125 |
. . . . . . . 8
|
| 23 | simplrl 535 |
. . . . . . . 8
| |
| 24 | 3, 22, 23 | 3jca 1180 |
. . . . . . 7
|
| 25 | 24 | ex 115 |
. . . . . 6
|
| 26 | 2, 25 | sylbi 121 |
. . . . 5
|
| 27 | 26 | com12 30 |
. . . 4
|
| 28 | 1, 27 | sylbi 121 |
. . 3
|
| 29 | 28 | imp 124 |
. 2
|
| 30 | elfz2nn0 10269 |
. 2
| |
| 31 | 29, 30 | sylibr 134 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2180 ax-14 2181 ax-ext 2189 ax-sep 4178 ax-pow 4234 ax-pr 4269 ax-un 4498 ax-setind 4603 ax-cnex 8051 ax-resscn 8052 ax-1cn 8053 ax-1re 8054 ax-icn 8055 ax-addcl 8056 ax-addrcl 8057 ax-mulcl 8058 ax-addcom 8060 ax-addass 8062 ax-distr 8064 ax-i2m1 8065 ax-0lt1 8066 ax-0id 8068 ax-rnegex 8069 ax-cnre 8071 ax-pre-ltirr 8072 ax-pre-ltwlin 8073 ax-pre-lttrn 8074 ax-pre-ltadd 8076 |
| This theorem depends on definitions: df-bi 117 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ne 2379 df-nel 2474 df-ral 2491 df-rex 2492 df-reu 2493 df-rab 2495 df-v 2778 df-sbc 3006 df-dif 3176 df-un 3178 df-in 3180 df-ss 3187 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-int 3900 df-br 4060 df-opab 4122 df-mpt 4123 df-id 4358 df-xp 4699 df-rel 4700 df-cnv 4701 df-co 4702 df-dm 4703 df-rn 4704 df-res 4705 df-ima 4706 df-iota 5251 df-fun 5292 df-fn 5293 df-f 5294 df-fv 5298 df-riota 5922 df-ov 5970 df-oprab 5971 df-mpo 5972 df-pnf 8144 df-mnf 8145 df-xr 8146 df-ltxr 8147 df-le 8148 df-sub 8280 df-neg 8281 df-inn 9072 df-n0 9331 df-z 9408 df-uz 9684 df-fz 10166 |
| This theorem is referenced by: swrdswrd 11196 |
| Copyright terms: Public domain | W3C validator |