ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elfz0ubfz0 Unicode version

Theorem elfz0ubfz0 10111
Description: An element of a finite set of sequential nonnegative integers is an element of a finite set of sequential nonnegative integers with the upper bound being an element of the finite set of sequential nonnegative integers with the same lower bound as for the first interval and the element under consideration as upper bound. (Contributed by Alexander van der Vekens, 3-Apr-2018.)
Assertion
Ref Expression
elfz0ubfz0  |-  ( ( K  e.  ( 0 ... N )  /\  L  e.  ( K ... N ) )  ->  K  e.  ( 0 ... L ) )

Proof of Theorem elfz0ubfz0
StepHypRef Expression
1 elfz2nn0 10098 . . . 4  |-  ( K  e.  ( 0 ... N )  <->  ( K  e.  NN0  /\  N  e. 
NN0  /\  K  <_  N ) )
2 elfz2 10002 . . . . . 6  |-  ( L  e.  ( K ... N )  <->  ( ( K  e.  ZZ  /\  N  e.  ZZ  /\  L  e.  ZZ )  /\  ( K  <_  L  /\  L  <_  N ) ) )
3 simpr1 1003 . . . . . . . 8  |-  ( ( ( ( K  e.  ZZ  /\  N  e.  ZZ  /\  L  e.  ZZ )  /\  ( K  <_  L  /\  L  <_  N ) )  /\  ( K  e.  NN0  /\  N  e.  NN0  /\  K  <_  N ) )  ->  K  e.  NN0 )
4 elnn0z 9255 . . . . . . . . . . . . . . . . 17  |-  ( K  e.  NN0  <->  ( K  e.  ZZ  /\  0  <_  K ) )
5 simpr 110 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( K  e.  ZZ  /\  L  e.  ZZ )  ->  L  e.  ZZ )
6 0z 9253 . . . . . . . . . . . . . . . . . . . . 21  |-  0  e.  ZZ
7 zletr 9291 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( 0  e.  ZZ  /\  K  e.  ZZ  /\  L  e.  ZZ )  ->  (
( 0  <_  K  /\  K  <_  L )  ->  0  <_  L
) )
86, 7mp3an1 1324 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( K  e.  ZZ  /\  L  e.  ZZ )  ->  ( ( 0  <_  K  /\  K  <_  L
)  ->  0  <_  L ) )
9 elnn0z 9255 . . . . . . . . . . . . . . . . . . . . 21  |-  ( L  e.  NN0  <->  ( L  e.  ZZ  /\  0  <_  L ) )
109simplbi2 385 . . . . . . . . . . . . . . . . . . . 20  |-  ( L  e.  ZZ  ->  (
0  <_  L  ->  L  e.  NN0 ) )
115, 8, 10sylsyld 58 . . . . . . . . . . . . . . . . . . 19  |-  ( ( K  e.  ZZ  /\  L  e.  ZZ )  ->  ( ( 0  <_  K  /\  K  <_  L
)  ->  L  e.  NN0 ) )
1211expd 258 . . . . . . . . . . . . . . . . . 18  |-  ( ( K  e.  ZZ  /\  L  e.  ZZ )  ->  ( 0  <_  K  ->  ( K  <_  L  ->  L  e.  NN0 )
) )
1312impancom 260 . . . . . . . . . . . . . . . . 17  |-  ( ( K  e.  ZZ  /\  0  <_  K )  -> 
( L  e.  ZZ  ->  ( K  <_  L  ->  L  e.  NN0 )
) )
144, 13sylbi 121 . . . . . . . . . . . . . . . 16  |-  ( K  e.  NN0  ->  ( L  e.  ZZ  ->  ( K  <_  L  ->  L  e.  NN0 ) ) )
1514com13 80 . . . . . . . . . . . . . . 15  |-  ( K  <_  L  ->  ( L  e.  ZZ  ->  ( K  e.  NN0  ->  L  e.  NN0 ) ) )
1615adantr 276 . . . . . . . . . . . . . 14  |-  ( ( K  <_  L  /\  L  <_  N )  -> 
( L  e.  ZZ  ->  ( K  e.  NN0  ->  L  e.  NN0 )
) )
1716com12 30 . . . . . . . . . . . . 13  |-  ( L  e.  ZZ  ->  (
( K  <_  L  /\  L  <_  N )  ->  ( K  e. 
NN0  ->  L  e.  NN0 ) ) )
18173ad2ant3 1020 . . . . . . . . . . . 12  |-  ( ( K  e.  ZZ  /\  N  e.  ZZ  /\  L  e.  ZZ )  ->  (
( K  <_  L  /\  L  <_  N )  ->  ( K  e. 
NN0  ->  L  e.  NN0 ) ) )
1918imp 124 . . . . . . . . . . 11  |-  ( ( ( K  e.  ZZ  /\  N  e.  ZZ  /\  L  e.  ZZ )  /\  ( K  <_  L  /\  L  <_  N ) )  ->  ( K  e.  NN0  ->  L  e.  NN0 ) )
2019com12 30 . . . . . . . . . 10  |-  ( K  e.  NN0  ->  ( ( ( K  e.  ZZ  /\  N  e.  ZZ  /\  L  e.  ZZ )  /\  ( K  <_  L  /\  L  <_  N ) )  ->  L  e.  NN0 ) )
21203ad2ant1 1018 . . . . . . . . 9  |-  ( ( K  e.  NN0  /\  N  e.  NN0  /\  K  <_  N )  ->  (
( ( K  e.  ZZ  /\  N  e.  ZZ  /\  L  e.  ZZ )  /\  ( K  <_  L  /\  L  <_  N ) )  ->  L  e.  NN0 ) )
2221impcom 125 . . . . . . . 8  |-  ( ( ( ( K  e.  ZZ  /\  N  e.  ZZ  /\  L  e.  ZZ )  /\  ( K  <_  L  /\  L  <_  N ) )  /\  ( K  e.  NN0  /\  N  e.  NN0  /\  K  <_  N ) )  ->  L  e.  NN0 )
23 simplrl 535 . . . . . . . 8  |-  ( ( ( ( K  e.  ZZ  /\  N  e.  ZZ  /\  L  e.  ZZ )  /\  ( K  <_  L  /\  L  <_  N ) )  /\  ( K  e.  NN0  /\  N  e.  NN0  /\  K  <_  N ) )  ->  K  <_  L
)
243, 22, 233jca 1177 . . . . . . 7  |-  ( ( ( ( K  e.  ZZ  /\  N  e.  ZZ  /\  L  e.  ZZ )  /\  ( K  <_  L  /\  L  <_  N ) )  /\  ( K  e.  NN0  /\  N  e.  NN0  /\  K  <_  N ) )  ->  ( K  e. 
NN0  /\  L  e.  NN0 
/\  K  <_  L
) )
2524ex 115 . . . . . 6  |-  ( ( ( K  e.  ZZ  /\  N  e.  ZZ  /\  L  e.  ZZ )  /\  ( K  <_  L  /\  L  <_  N ) )  ->  ( ( K  e.  NN0  /\  N  e.  NN0  /\  K  <_  N )  ->  ( K  e.  NN0  /\  L  e.  NN0  /\  K  <_  L ) ) )
262, 25sylbi 121 . . . . 5  |-  ( L  e.  ( K ... N )  ->  (
( K  e.  NN0  /\  N  e.  NN0  /\  K  <_  N )  -> 
( K  e.  NN0  /\  L  e.  NN0  /\  K  <_  L ) ) )
2726com12 30 . . . 4  |-  ( ( K  e.  NN0  /\  N  e.  NN0  /\  K  <_  N )  ->  ( L  e.  ( K ... N )  ->  ( K  e.  NN0  /\  L  e.  NN0  /\  K  <_  L ) ) )
281, 27sylbi 121 . . 3  |-  ( K  e.  ( 0 ... N )  ->  ( L  e.  ( K ... N )  ->  ( K  e.  NN0  /\  L  e.  NN0  /\  K  <_  L ) ) )
2928imp 124 . 2  |-  ( ( K  e.  ( 0 ... N )  /\  L  e.  ( K ... N ) )  -> 
( K  e.  NN0  /\  L  e.  NN0  /\  K  <_  L ) )
30 elfz2nn0 10098 . 2  |-  ( K  e.  ( 0 ... L )  <->  ( K  e.  NN0  /\  L  e. 
NN0  /\  K  <_  L ) )
3129, 30sylibr 134 1  |-  ( ( K  e.  ( 0 ... N )  /\  L  e.  ( K ... N ) )  ->  K  e.  ( 0 ... L ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    /\ w3a 978    e. wcel 2148   class class class wbr 4000  (class class class)co 5869   0cc0 7802    <_ cle 7983   NN0cn0 9165   ZZcz 9242   ...cfz 9995
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4118  ax-pow 4171  ax-pr 4206  ax-un 4430  ax-setind 4533  ax-cnex 7893  ax-resscn 7894  ax-1cn 7895  ax-1re 7896  ax-icn 7897  ax-addcl 7898  ax-addrcl 7899  ax-mulcl 7900  ax-addcom 7902  ax-addass 7904  ax-distr 7906  ax-i2m1 7907  ax-0lt1 7908  ax-0id 7910  ax-rnegex 7911  ax-cnre 7913  ax-pre-ltirr 7914  ax-pre-ltwlin 7915  ax-pre-lttrn 7916  ax-pre-ltadd 7918
This theorem depends on definitions:  df-bi 117  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rab 2464  df-v 2739  df-sbc 2963  df-dif 3131  df-un 3133  df-in 3135  df-ss 3142  df-pw 3576  df-sn 3597  df-pr 3598  df-op 3600  df-uni 3808  df-int 3843  df-br 4001  df-opab 4062  df-mpt 4063  df-id 4290  df-xp 4629  df-rel 4630  df-cnv 4631  df-co 4632  df-dm 4633  df-rn 4634  df-res 4635  df-ima 4636  df-iota 5174  df-fun 5214  df-fn 5215  df-f 5216  df-fv 5220  df-riota 5825  df-ov 5872  df-oprab 5873  df-mpo 5874  df-pnf 7984  df-mnf 7985  df-xr 7986  df-ltxr 7987  df-le 7988  df-sub 8120  df-neg 8121  df-inn 8909  df-n0 9166  df-z 9243  df-uz 9518  df-fz 9996
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator