| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > preq2 | Unicode version | ||
| Description: Equality theorem for unordered pairs. (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| preq2 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | preq1 3743 |
. 2
| |
| 2 | prcom 3742 |
. 2
| |
| 3 | prcom 3742 |
. 2
| |
| 4 | 1, 2, 3 | 3eqtr4g 2287 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-v 2801 df-un 3201 df-sn 3672 df-pr 3673 |
| This theorem is referenced by: preq12 3745 preq2i 3747 preq2d 3750 tpeq2 3753 ifpprsnssdc 3774 preq12bg 3851 opeq2 3858 uniprg 3903 intprg 3956 prexg 4295 opth 4323 opeqsn 4339 relop 4872 funopg 5352 en2 6973 prfidceq 7090 pr2ne 7365 pr1or2 7367 hashprg 11030 upgrex 15903 usgredg4 16013 usgredgreu 16014 uspgredg2vtxeu 16016 uspgredg2v 16019 ifpsnprss 16054 upgriswlkdc 16071 bj-prexg 16274 |
| Copyright terms: Public domain | W3C validator |