Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > preq2 | Unicode version |
Description: Equality theorem for unordered pairs. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
preq2 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | preq1 3660 | . 2 | |
2 | prcom 3659 | . 2 | |
3 | prcom 3659 | . 2 | |
4 | 1, 2, 3 | 3eqtr4g 2228 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wceq 1348 cpr 3584 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-tru 1351 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-v 2732 df-un 3125 df-sn 3589 df-pr 3590 |
This theorem is referenced by: preq12 3662 preq2i 3664 preq2d 3667 tpeq2 3670 preq12bg 3760 opeq2 3766 uniprg 3811 intprg 3864 prexg 4196 opth 4222 opeqsn 4237 relop 4761 funopg 5232 pr2ne 7169 hashprg 10743 bj-prexg 13946 |
Copyright terms: Public domain | W3C validator |