| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > preq2 | Unicode version | ||
| Description: Equality theorem for unordered pairs. (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| preq2 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | preq1 3720 |
. 2
| |
| 2 | prcom 3719 |
. 2
| |
| 3 | prcom 3719 |
. 2
| |
| 4 | 1, 2, 3 | 3eqtr4g 2265 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2189 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-v 2778 df-un 3178 df-sn 3649 df-pr 3650 |
| This theorem is referenced by: preq12 3722 preq2i 3724 preq2d 3727 tpeq2 3730 preq12bg 3827 opeq2 3834 uniprg 3879 intprg 3932 prexg 4271 opth 4299 opeqsn 4315 relop 4846 funopg 5324 en2 6936 prfidceq 7051 pr2ne 7326 pr1or2 7328 hashprg 10990 upgrex 15814 bj-prexg 16046 |
| Copyright terms: Public domain | W3C validator |