ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  preq2 Unicode version

Theorem preq2 3744
Description: Equality theorem for unordered pairs. (Contributed by NM, 5-Aug-1993.)
Assertion
Ref Expression
preq2  |-  ( A  =  B  ->  { C ,  A }  =  { C ,  B }
)

Proof of Theorem preq2
StepHypRef Expression
1 preq1 3743 . 2  |-  ( A  =  B  ->  { A ,  C }  =  { B ,  C }
)
2 prcom 3742 . 2  |-  { C ,  A }  =  { A ,  C }
3 prcom 3742 . 2  |-  { C ,  B }  =  { B ,  C }
41, 2, 33eqtr4g 2287 1  |-  ( A  =  B  ->  { C ,  A }  =  { C ,  B }
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1395   {cpr 3667
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-v 2801  df-un 3201  df-sn 3672  df-pr 3673
This theorem is referenced by:  preq12  3745  preq2i  3747  preq2d  3750  tpeq2  3753  ifpprsnssdc  3774  preq12bg  3851  opeq2  3858  uniprg  3903  intprg  3956  prexg  4295  opth  4323  opeqsn  4339  relop  4872  funopg  5352  en2  6973  prfidceq  7090  pr2ne  7365  pr1or2  7367  hashprg  11030  upgrex  15903  usgredg4  16013  usgredgreu  16014  uspgredg2vtxeu  16016  uspgredg2v  16019  ifpsnprss  16054  upgriswlkdc  16071  bj-prexg  16274
  Copyright terms: Public domain W3C validator