Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > preq2 | Unicode version |
Description: Equality theorem for unordered pairs. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
preq2 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | preq1 3653 | . 2 | |
2 | prcom 3652 | . 2 | |
3 | prcom 3652 | . 2 | |
4 | 1, 2, 3 | 3eqtr4g 2224 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wceq 1343 cpr 3577 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-v 2728 df-un 3120 df-sn 3582 df-pr 3583 |
This theorem is referenced by: preq12 3655 preq2i 3657 preq2d 3660 tpeq2 3663 preq12bg 3753 opeq2 3759 uniprg 3804 intprg 3857 prexg 4189 opth 4215 opeqsn 4230 relop 4754 funopg 5222 pr2ne 7148 hashprg 10721 bj-prexg 13793 |
Copyright terms: Public domain | W3C validator |