![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > tpeq2 | GIF version |
Description: Equality theorem for unordered triples. (Contributed by NM, 13-Sep-2011.) |
Ref | Expression |
---|---|
tpeq2 | ⊢ (𝐴 = 𝐵 → {𝐶, 𝐴, 𝐷} = {𝐶, 𝐵, 𝐷}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | preq2 3696 | . . 3 ⊢ (𝐴 = 𝐵 → {𝐶, 𝐴} = {𝐶, 𝐵}) | |
2 | 1 | uneq1d 3312 | . 2 ⊢ (𝐴 = 𝐵 → ({𝐶, 𝐴} ∪ {𝐷}) = ({𝐶, 𝐵} ∪ {𝐷})) |
3 | df-tp 3626 | . 2 ⊢ {𝐶, 𝐴, 𝐷} = ({𝐶, 𝐴} ∪ {𝐷}) | |
4 | df-tp 3626 | . 2 ⊢ {𝐶, 𝐵, 𝐷} = ({𝐶, 𝐵} ∪ {𝐷}) | |
5 | 2, 3, 4 | 3eqtr4g 2251 | 1 ⊢ (𝐴 = 𝐵 → {𝐶, 𝐴, 𝐷} = {𝐶, 𝐵, 𝐷}) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1364 ∪ cun 3151 {csn 3618 {cpr 3619 {ctp 3620 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-v 2762 df-un 3157 df-sn 3624 df-pr 3625 df-tp 3626 |
This theorem is referenced by: tpeq2d 3708 fztpval 10149 |
Copyright terms: Public domain | W3C validator |