ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  uneq1d Unicode version

Theorem uneq1d 3317
Description: Deduction adding union to the right in a class equality. (Contributed by NM, 29-Mar-1998.)
Hypothesis
Ref Expression
uneq1d.1  |-  ( ph  ->  A  =  B )
Assertion
Ref Expression
uneq1d  |-  ( ph  ->  ( A  u.  C
)  =  ( B  u.  C ) )

Proof of Theorem uneq1d
StepHypRef Expression
1 uneq1d.1 . 2  |-  ( ph  ->  A  =  B )
2 uneq1 3311 . 2  |-  ( A  =  B  ->  ( A  u.  C )  =  ( B  u.  C ) )
31, 2syl 14 1  |-  ( ph  ->  ( A  u.  C
)  =  ( B  u.  C ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1364    u. cun 3155
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-v 2765  df-un 3161
This theorem is referenced by:  ifeq1  3565  preq1  3700  tpeq1  3709  tpeq2  3710  resasplitss  5440  fmptpr  5757  funresdfunsnss  5768  rdgisucinc  6452  oasuc  6531  omsuc  6539  funresdfunsndc  6573  fisseneq  7004  sbthlemi5  7036  exmidfodomrlemim  7280  fzpred  10162  fseq1p1m1  10186  nn0split  10228  nnsplit  10229  fzo0sn0fzo1  10314  fzosplitprm1  10327  zsupcllemstep  10336  fsum1p  11600  fprod1p  11781  setsvala  12734  setsabsd  12742  setscom  12743  prdsex  12971  prdsval  12975  plyaddlem1  15067  plymullem1  15068
  Copyright terms: Public domain W3C validator