| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > uneq1d | Unicode version | ||
| Description: Deduction adding union to the right in a class equality. (Contributed by NM, 29-Mar-1998.) |
| Ref | Expression |
|---|---|
| uneq1d.1 |
|
| Ref | Expression |
|---|---|
| uneq1d |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | uneq1d.1 |
. 2
| |
| 2 | uneq1 3328 |
. 2
| |
| 3 | 1, 2 | syl 14 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2189 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-v 2778 df-un 3178 |
| This theorem is referenced by: ifeq1 3582 preq1 3720 tpeq1 3729 tpeq2 3730 resasplitss 5477 fmptpr 5799 funresdfunsnss 5810 rdgisucinc 6494 oasuc 6573 omsuc 6581 funresdfunsndc 6615 fisseneq 7057 sbthlemi5 7089 exmidfodomrlemim 7340 fzpred 10227 fseq1p1m1 10251 nn0split 10293 nnsplit 10294 fzo0sn0fzo1 10387 fzosplitprm1 10400 zsupcllemstep 10409 fsum1p 11844 fprod1p 12025 setsvala 12978 setsabsd 12986 setscom 12987 prdsex 13216 prdsval 13220 plyaddlem1 15334 plymullem1 15335 |
| Copyright terms: Public domain | W3C validator |