ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  uneq1d Unicode version

Theorem uneq1d 3313
Description: Deduction adding union to the right in a class equality. (Contributed by NM, 29-Mar-1998.)
Hypothesis
Ref Expression
uneq1d.1  |-  ( ph  ->  A  =  B )
Assertion
Ref Expression
uneq1d  |-  ( ph  ->  ( A  u.  C
)  =  ( B  u.  C ) )

Proof of Theorem uneq1d
StepHypRef Expression
1 uneq1d.1 . 2  |-  ( ph  ->  A  =  B )
2 uneq1 3307 . 2  |-  ( A  =  B  ->  ( A  u.  C )  =  ( B  u.  C ) )
31, 2syl 14 1  |-  ( ph  ->  ( A  u.  C
)  =  ( B  u.  C ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1364    u. cun 3152
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-v 2762  df-un 3158
This theorem is referenced by:  ifeq1  3561  preq1  3696  tpeq1  3705  tpeq2  3706  resasplitss  5434  fmptpr  5751  funresdfunsnss  5762  rdgisucinc  6440  oasuc  6519  omsuc  6527  funresdfunsndc  6561  fisseneq  6990  sbthlemi5  7022  exmidfodomrlemim  7263  fzpred  10139  fseq1p1m1  10163  nn0split  10205  nnsplit  10206  fzo0sn0fzo1  10291  fzosplitprm1  10304  fsum1p  11564  fprod1p  11745  zsupcllemstep  12085  setsvala  12652  setsabsd  12660  setscom  12661  prdsex  12883  plyaddlem1  14926  plymullem1  14927
  Copyright terms: Public domain W3C validator