| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > uneq1d | Unicode version | ||
| Description: Deduction adding union to the right in a class equality. (Contributed by NM, 29-Mar-1998.) |
| Ref | Expression |
|---|---|
| uneq1d.1 |
|
| Ref | Expression |
|---|---|
| uneq1d |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | uneq1d.1 |
. 2
| |
| 2 | uneq1 3320 |
. 2
| |
| 3 | 1, 2 | syl 14 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-ext 2187 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-v 2774 df-un 3170 |
| This theorem is referenced by: ifeq1 3574 preq1 3710 tpeq1 3719 tpeq2 3720 resasplitss 5457 fmptpr 5778 funresdfunsnss 5789 rdgisucinc 6473 oasuc 6552 omsuc 6560 funresdfunsndc 6594 fisseneq 7033 sbthlemi5 7065 exmidfodomrlemim 7311 fzpred 10194 fseq1p1m1 10218 nn0split 10260 nnsplit 10261 fzo0sn0fzo1 10352 fzosplitprm1 10365 zsupcllemstep 10374 fsum1p 11762 fprod1p 11943 setsvala 12896 setsabsd 12904 setscom 12905 prdsex 13134 prdsval 13138 plyaddlem1 15252 plymullem1 15253 |
| Copyright terms: Public domain | W3C validator |