| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > uneq1d | Unicode version | ||
| Description: Deduction adding union to the right in a class equality. (Contributed by NM, 29-Mar-1998.) |
| Ref | Expression |
|---|---|
| uneq1d.1 |
|
| Ref | Expression |
|---|---|
| uneq1d |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | uneq1d.1 |
. 2
| |
| 2 | uneq1 3310 |
. 2
| |
| 3 | 1, 2 | syl 14 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-v 2765 df-un 3161 |
| This theorem is referenced by: ifeq1 3564 preq1 3699 tpeq1 3708 tpeq2 3709 resasplitss 5437 fmptpr 5754 funresdfunsnss 5765 rdgisucinc 6443 oasuc 6522 omsuc 6530 funresdfunsndc 6564 fisseneq 6995 sbthlemi5 7027 exmidfodomrlemim 7268 fzpred 10145 fseq1p1m1 10169 nn0split 10211 nnsplit 10212 fzo0sn0fzo1 10297 fzosplitprm1 10310 zsupcllemstep 10319 fsum1p 11583 fprod1p 11764 setsvala 12709 setsabsd 12717 setscom 12718 prdsex 12940 plyaddlem1 14983 plymullem1 14984 |
| Copyright terms: Public domain | W3C validator |