| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > uneq1d | Unicode version | ||
| Description: Deduction adding union to the right in a class equality. (Contributed by NM, 29-Mar-1998.) |
| Ref | Expression |
|---|---|
| uneq1d.1 |
|
| Ref | Expression |
|---|---|
| uneq1d |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | uneq1d.1 |
. 2
| |
| 2 | uneq1 3320 |
. 2
| |
| 3 | 1, 2 | syl 14 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-ext 2187 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-v 2774 df-un 3170 |
| This theorem is referenced by: ifeq1 3574 preq1 3710 tpeq1 3719 tpeq2 3720 resasplitss 5455 fmptpr 5776 funresdfunsnss 5787 rdgisucinc 6471 oasuc 6550 omsuc 6558 funresdfunsndc 6592 fisseneq 7031 sbthlemi5 7063 exmidfodomrlemim 7309 fzpred 10192 fseq1p1m1 10216 nn0split 10258 nnsplit 10259 fzo0sn0fzo1 10350 fzosplitprm1 10363 zsupcllemstep 10372 fsum1p 11729 fprod1p 11910 setsvala 12863 setsabsd 12871 setscom 12872 prdsex 13101 prdsval 13105 plyaddlem1 15219 plymullem1 15220 |
| Copyright terms: Public domain | W3C validator |