| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > uneq1d | Unicode version | ||
| Description: Deduction adding union to the right in a class equality. (Contributed by NM, 29-Mar-1998.) |
| Ref | Expression |
|---|---|
| uneq1d.1 |
|
| Ref | Expression |
|---|---|
| uneq1d |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | uneq1d.1 |
. 2
| |
| 2 | uneq1 3351 |
. 2
| |
| 3 | 1, 2 | syl 14 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-v 2801 df-un 3201 |
| This theorem is referenced by: ifeq1 3605 preq1 3743 tpeq1 3752 tpeq2 3753 resasplitss 5505 fmptpr 5831 funresdfunsnss 5842 rdgisucinc 6531 oasuc 6610 omsuc 6618 funresdfunsndc 6652 fisseneq 7096 sbthlemi5 7128 exmidfodomrlemim 7379 fzpred 10266 fseq1p1m1 10290 nn0split 10332 nnsplit 10333 fzo0sn0fzo1 10427 fzosplitprm1 10440 zsupcllemstep 10449 fsum1p 11929 fprod1p 12110 setsvala 13063 setsabsd 13071 setscom 13072 prdsex 13302 prdsval 13306 plyaddlem1 15421 plymullem1 15422 |
| Copyright terms: Public domain | W3C validator |