ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  uneq1d Unicode version

Theorem uneq1d 3317
Description: Deduction adding union to the right in a class equality. (Contributed by NM, 29-Mar-1998.)
Hypothesis
Ref Expression
uneq1d.1  |-  ( ph  ->  A  =  B )
Assertion
Ref Expression
uneq1d  |-  ( ph  ->  ( A  u.  C
)  =  ( B  u.  C ) )

Proof of Theorem uneq1d
StepHypRef Expression
1 uneq1d.1 . 2  |-  ( ph  ->  A  =  B )
2 uneq1 3311 . 2  |-  ( A  =  B  ->  ( A  u.  C )  =  ( B  u.  C ) )
31, 2syl 14 1  |-  ( ph  ->  ( A  u.  C
)  =  ( B  u.  C ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1364    u. cun 3155
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-v 2765  df-un 3161
This theorem is referenced by:  ifeq1  3565  preq1  3700  tpeq1  3709  tpeq2  3710  resasplitss  5438  fmptpr  5755  funresdfunsnss  5766  rdgisucinc  6444  oasuc  6523  omsuc  6531  funresdfunsndc  6565  fisseneq  6996  sbthlemi5  7028  exmidfodomrlemim  7270  fzpred  10147  fseq1p1m1  10171  nn0split  10213  nnsplit  10214  fzo0sn0fzo1  10299  fzosplitprm1  10312  zsupcllemstep  10321  fsum1p  11585  fprod1p  11766  setsvala  12719  setsabsd  12727  setscom  12728  prdsex  12950  plyaddlem1  14993  plymullem1  14994
  Copyright terms: Public domain W3C validator