ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  uneq1d Unicode version

Theorem uneq1d 3334
Description: Deduction adding union to the right in a class equality. (Contributed by NM, 29-Mar-1998.)
Hypothesis
Ref Expression
uneq1d.1  |-  ( ph  ->  A  =  B )
Assertion
Ref Expression
uneq1d  |-  ( ph  ->  ( A  u.  C
)  =  ( B  u.  C ) )

Proof of Theorem uneq1d
StepHypRef Expression
1 uneq1d.1 . 2  |-  ( ph  ->  A  =  B )
2 uneq1 3328 . 2  |-  ( A  =  B  ->  ( A  u.  C )  =  ( B  u.  C ) )
31, 2syl 14 1  |-  ( ph  ->  ( A  u.  C
)  =  ( B  u.  C ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1373    u. cun 3172
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2189
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-v 2778  df-un 3178
This theorem is referenced by:  ifeq1  3582  preq1  3720  tpeq1  3729  tpeq2  3730  resasplitss  5477  fmptpr  5799  funresdfunsnss  5810  rdgisucinc  6494  oasuc  6573  omsuc  6581  funresdfunsndc  6615  fisseneq  7057  sbthlemi5  7089  exmidfodomrlemim  7340  fzpred  10227  fseq1p1m1  10251  nn0split  10293  nnsplit  10294  fzo0sn0fzo1  10387  fzosplitprm1  10400  zsupcllemstep  10409  fsum1p  11844  fprod1p  12025  setsvala  12978  setsabsd  12986  setscom  12987  prdsex  13216  prdsval  13220  plyaddlem1  15334  plymullem1  15335
  Copyright terms: Public domain W3C validator