| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > uneq1d | Unicode version | ||
| Description: Deduction adding union to the right in a class equality. (Contributed by NM, 29-Mar-1998.) |
| Ref | Expression |
|---|---|
| uneq1d.1 |
|
| Ref | Expression |
|---|---|
| uneq1d |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | uneq1d.1 |
. 2
| |
| 2 | uneq1 3311 |
. 2
| |
| 3 | 1, 2 | syl 14 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-v 2765 df-un 3161 |
| This theorem is referenced by: ifeq1 3565 preq1 3700 tpeq1 3709 tpeq2 3710 resasplitss 5438 fmptpr 5755 funresdfunsnss 5766 rdgisucinc 6444 oasuc 6523 omsuc 6531 funresdfunsndc 6565 fisseneq 6996 sbthlemi5 7028 exmidfodomrlemim 7270 fzpred 10147 fseq1p1m1 10171 nn0split 10213 nnsplit 10214 fzo0sn0fzo1 10299 fzosplitprm1 10312 zsupcllemstep 10321 fsum1p 11585 fprod1p 11766 setsvala 12719 setsabsd 12727 setscom 12728 prdsex 12950 plyaddlem1 14993 plymullem1 14994 |
| Copyright terms: Public domain | W3C validator |