Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > uneq1d | Unicode version |
Description: Deduction adding union to the right in a class equality. (Contributed by NM, 29-Mar-1998.) |
Ref | Expression |
---|---|
uneq1d.1 |
Ref | Expression |
---|---|
uneq1d |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | uneq1d.1 | . 2 | |
2 | uneq1 3250 | . 2 | |
3 | 1, 2 | syl 14 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wceq 1332 cun 3096 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1424 ax-7 1425 ax-gen 1426 ax-ie1 1470 ax-ie2 1471 ax-8 1481 ax-10 1482 ax-11 1483 ax-i12 1484 ax-bndl 1486 ax-4 1487 ax-17 1503 ax-i9 1507 ax-ial 1511 ax-i5r 1512 ax-ext 2136 |
This theorem depends on definitions: df-bi 116 df-tru 1335 df-nf 1438 df-sb 1740 df-clab 2141 df-cleq 2147 df-clel 2150 df-nfc 2285 df-v 2711 df-un 3102 |
This theorem is referenced by: ifeq1 3504 preq1 3632 tpeq1 3641 tpeq2 3642 resasplitss 5342 fmptpr 5652 funresdfunsnss 5663 rdgisucinc 6322 oasuc 6400 omsuc 6408 funresdfunsndc 6442 fisseneq 6865 sbthlemi5 6894 exmidfodomrlemim 7115 fzpred 9950 fseq1p1m1 9974 nn0split 10013 nnsplit 10014 fzo0sn0fzo1 10098 fzosplitprm1 10111 fsum1p 11292 fprod1p 11473 zsupcllemstep 11805 setsvala 12160 setsabsd 12168 setscom 12169 |
Copyright terms: Public domain | W3C validator |