ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  uneq1d Unicode version

Theorem uneq1d 3316
Description: Deduction adding union to the right in a class equality. (Contributed by NM, 29-Mar-1998.)
Hypothesis
Ref Expression
uneq1d.1  |-  ( ph  ->  A  =  B )
Assertion
Ref Expression
uneq1d  |-  ( ph  ->  ( A  u.  C
)  =  ( B  u.  C ) )

Proof of Theorem uneq1d
StepHypRef Expression
1 uneq1d.1 . 2  |-  ( ph  ->  A  =  B )
2 uneq1 3310 . 2  |-  ( A  =  B  ->  ( A  u.  C )  =  ( B  u.  C ) )
31, 2syl 14 1  |-  ( ph  ->  ( A  u.  C
)  =  ( B  u.  C ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1364    u. cun 3155
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-v 2765  df-un 3161
This theorem is referenced by:  ifeq1  3564  preq1  3699  tpeq1  3708  tpeq2  3709  resasplitss  5437  fmptpr  5754  funresdfunsnss  5765  rdgisucinc  6443  oasuc  6522  omsuc  6530  funresdfunsndc  6564  fisseneq  6995  sbthlemi5  7027  exmidfodomrlemim  7268  fzpred  10145  fseq1p1m1  10169  nn0split  10211  nnsplit  10212  fzo0sn0fzo1  10297  fzosplitprm1  10310  zsupcllemstep  10319  fsum1p  11583  fprod1p  11764  setsvala  12709  setsabsd  12717  setscom  12718  prdsex  12940  plyaddlem1  14983  plymullem1  14984
  Copyright terms: Public domain W3C validator