ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  tr0 Unicode version

Theorem tr0 4086
Description: The empty set is transitive. (Contributed by NM, 16-Sep-1993.)
Assertion
Ref Expression
tr0  |-  Tr  (/)

Proof of Theorem tr0
StepHypRef Expression
1 0ss 3443 . 2  |-  (/)  C_  ~P (/)
2 dftr4 4080 . 2  |-  ( Tr  (/) 
<->  (/)  C_  ~P (/) )
31, 2mpbir 145 1  |-  Tr  (/)
Colors of variables: wff set class
Syntax hints:    C_ wss 3112   (/)c0 3405   ~Pcpw 3554   Tr wtr 4075
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1434  ax-7 1435  ax-gen 1436  ax-ie1 1480  ax-ie2 1481  ax-8 1491  ax-10 1492  ax-11 1493  ax-i12 1494  ax-bndl 1496  ax-4 1497  ax-17 1513  ax-i9 1517  ax-ial 1521  ax-i5r 1522  ax-ext 2146
This theorem depends on definitions:  df-bi 116  df-tru 1345  df-nf 1448  df-sb 1750  df-clab 2151  df-cleq 2157  df-clel 2160  df-nfc 2295  df-ral 2447  df-v 2724  df-dif 3114  df-in 3118  df-ss 3125  df-nul 3406  df-pw 3556  df-uni 3785  df-tr 4076
This theorem is referenced by:  ord0  4364  ordom  4579
  Copyright terms: Public domain W3C validator