ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  trin Unicode version

Theorem trin 4123
Description: The intersection of transitive classes is transitive. (Contributed by NM, 9-May-1994.)
Assertion
Ref Expression
trin  |-  ( ( Tr  A  /\  Tr  B )  ->  Tr  ( A  i^i  B ) )

Proof of Theorem trin
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 elin 3330 . . . . 5  |-  ( x  e.  ( A  i^i  B )  <->  ( x  e.  A  /\  x  e.  B ) )
2 trss 4122 . . . . . 6  |-  ( Tr  A  ->  ( x  e.  A  ->  x  C_  A ) )
3 trss 4122 . . . . . 6  |-  ( Tr  B  ->  ( x  e.  B  ->  x  C_  B ) )
42, 3im2anan9 598 . . . . 5  |-  ( ( Tr  A  /\  Tr  B )  ->  (
( x  e.  A  /\  x  e.  B
)  ->  ( x  C_  A  /\  x  C_  B ) ) )
51, 4biimtrid 152 . . . 4  |-  ( ( Tr  A  /\  Tr  B )  ->  (
x  e.  ( A  i^i  B )  -> 
( x  C_  A  /\  x  C_  B ) ) )
6 ssin 3369 . . . 4  |-  ( ( x  C_  A  /\  x  C_  B )  <->  x  C_  ( A  i^i  B ) )
75, 6imbitrdi 161 . . 3  |-  ( ( Tr  A  /\  Tr  B )  ->  (
x  e.  ( A  i^i  B )  ->  x  C_  ( A  i^i  B ) ) )
87ralrimiv 2559 . 2  |-  ( ( Tr  A  /\  Tr  B )  ->  A. x  e.  ( A  i^i  B
) x  C_  ( A  i^i  B ) )
9 dftr3 4117 . 2  |-  ( Tr  ( A  i^i  B
)  <->  A. x  e.  ( A  i^i  B ) x  C_  ( A  i^i  B ) )
108, 9sylibr 134 1  |-  ( ( Tr  A  /\  Tr  B )  ->  Tr  ( A  i^i  B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    e. wcel 2158   A.wral 2465    i^i cin 3140    C_ wss 3141   Tr wtr 4113
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1457  ax-7 1458  ax-gen 1459  ax-ie1 1503  ax-ie2 1504  ax-8 1514  ax-10 1515  ax-11 1516  ax-i12 1517  ax-bndl 1519  ax-4 1520  ax-17 1536  ax-i9 1540  ax-ial 1544  ax-i5r 1545  ax-ext 2169
This theorem depends on definitions:  df-bi 117  df-tru 1366  df-nf 1471  df-sb 1773  df-clab 2174  df-cleq 2180  df-clel 2183  df-nfc 2318  df-ral 2470  df-v 2751  df-in 3147  df-ss 3154  df-uni 3822  df-tr 4114
This theorem is referenced by:  ordin  4397
  Copyright terms: Public domain W3C validator