ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  trin Unicode version

Theorem trin 4191
Description: The intersection of transitive classes is transitive. (Contributed by NM, 9-May-1994.)
Assertion
Ref Expression
trin  |-  ( ( Tr  A  /\  Tr  B )  ->  Tr  ( A  i^i  B ) )

Proof of Theorem trin
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 elin 3387 . . . . 5  |-  ( x  e.  ( A  i^i  B )  <->  ( x  e.  A  /\  x  e.  B ) )
2 trss 4190 . . . . . 6  |-  ( Tr  A  ->  ( x  e.  A  ->  x  C_  A ) )
3 trss 4190 . . . . . 6  |-  ( Tr  B  ->  ( x  e.  B  ->  x  C_  B ) )
42, 3im2anan9 600 . . . . 5  |-  ( ( Tr  A  /\  Tr  B )  ->  (
( x  e.  A  /\  x  e.  B
)  ->  ( x  C_  A  /\  x  C_  B ) ) )
51, 4biimtrid 152 . . . 4  |-  ( ( Tr  A  /\  Tr  B )  ->  (
x  e.  ( A  i^i  B )  -> 
( x  C_  A  /\  x  C_  B ) ) )
6 ssin 3426 . . . 4  |-  ( ( x  C_  A  /\  x  C_  B )  <->  x  C_  ( A  i^i  B ) )
75, 6imbitrdi 161 . . 3  |-  ( ( Tr  A  /\  Tr  B )  ->  (
x  e.  ( A  i^i  B )  ->  x  C_  ( A  i^i  B ) ) )
87ralrimiv 2602 . 2  |-  ( ( Tr  A  /\  Tr  B )  ->  A. x  e.  ( A  i^i  B
) x  C_  ( A  i^i  B ) )
9 dftr3 4185 . 2  |-  ( Tr  ( A  i^i  B
)  <->  A. x  e.  ( A  i^i  B ) x  C_  ( A  i^i  B ) )
108, 9sylibr 134 1  |-  ( ( Tr  A  /\  Tr  B )  ->  Tr  ( A  i^i  B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    e. wcel 2200   A.wral 2508    i^i cin 3196    C_ wss 3197   Tr wtr 4181
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-v 2801  df-in 3203  df-ss 3210  df-uni 3888  df-tr 4182
This theorem is referenced by:  ordin  4475
  Copyright terms: Public domain W3C validator