ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  trin Unicode version

Theorem trin 4090
Description: The intersection of transitive classes is transitive. (Contributed by NM, 9-May-1994.)
Assertion
Ref Expression
trin  |-  ( ( Tr  A  /\  Tr  B )  ->  Tr  ( A  i^i  B ) )

Proof of Theorem trin
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 elin 3305 . . . . 5  |-  ( x  e.  ( A  i^i  B )  <->  ( x  e.  A  /\  x  e.  B ) )
2 trss 4089 . . . . . 6  |-  ( Tr  A  ->  ( x  e.  A  ->  x  C_  A ) )
3 trss 4089 . . . . . 6  |-  ( Tr  B  ->  ( x  e.  B  ->  x  C_  B ) )
42, 3im2anan9 588 . . . . 5  |-  ( ( Tr  A  /\  Tr  B )  ->  (
( x  e.  A  /\  x  e.  B
)  ->  ( x  C_  A  /\  x  C_  B ) ) )
51, 4syl5bi 151 . . . 4  |-  ( ( Tr  A  /\  Tr  B )  ->  (
x  e.  ( A  i^i  B )  -> 
( x  C_  A  /\  x  C_  B ) ) )
6 ssin 3344 . . . 4  |-  ( ( x  C_  A  /\  x  C_  B )  <->  x  C_  ( A  i^i  B ) )
75, 6syl6ib 160 . . 3  |-  ( ( Tr  A  /\  Tr  B )  ->  (
x  e.  ( A  i^i  B )  ->  x  C_  ( A  i^i  B ) ) )
87ralrimiv 2538 . 2  |-  ( ( Tr  A  /\  Tr  B )  ->  A. x  e.  ( A  i^i  B
) x  C_  ( A  i^i  B ) )
9 dftr3 4084 . 2  |-  ( Tr  ( A  i^i  B
)  <->  A. x  e.  ( A  i^i  B ) x  C_  ( A  i^i  B ) )
108, 9sylibr 133 1  |-  ( ( Tr  A  /\  Tr  B )  ->  Tr  ( A  i^i  B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    e. wcel 2136   A.wral 2444    i^i cin 3115    C_ wss 3116   Tr wtr 4080
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-v 2728  df-in 3122  df-ss 3129  df-uni 3790  df-tr 4081
This theorem is referenced by:  ordin  4363
  Copyright terms: Public domain W3C validator