ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ord0 Unicode version

Theorem ord0 4377
Description: The empty set is an ordinal class. (Contributed by NM, 11-May-1994.)
Assertion
Ref Expression
ord0  |-  Ord  (/)

Proof of Theorem ord0
StepHypRef Expression
1 tr0 4099 . 2  |-  Tr  (/)
2 ral0 3517 . 2  |-  A. x  e.  (/)  Tr  x
3 dford3 4353 . 2  |-  ( Ord  (/) 
<->  ( Tr  (/)  /\  A. x  e.  (/)  Tr  x
) )
41, 2, 3mpbir2an 938 1  |-  Ord  (/)
Colors of variables: wff set class
Syntax hints:   A.wral 2449   (/)c0 3415   Tr wtr 4088   Ord word 4348
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 610  ax-in2 611  ax-io 705  ax-5 1441  ax-7 1442  ax-gen 1443  ax-ie1 1487  ax-ie2 1488  ax-8 1498  ax-10 1499  ax-11 1500  ax-i12 1501  ax-bndl 1503  ax-4 1504  ax-17 1520  ax-i9 1524  ax-ial 1528  ax-i5r 1529  ax-ext 2153
This theorem depends on definitions:  df-bi 116  df-tru 1352  df-nf 1455  df-sb 1757  df-clab 2158  df-cleq 2164  df-clel 2167  df-nfc 2302  df-ral 2454  df-v 2733  df-dif 3124  df-in 3128  df-ss 3135  df-nul 3416  df-pw 3569  df-uni 3798  df-tr 4089  df-iord 4352
This theorem is referenced by:  0elon  4378  ordtriexmidlem  4504  2ordpr  4509  smo0  6281
  Copyright terms: Public domain W3C validator