ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ord0 Unicode version

Theorem ord0 4426
Description: The empty set is an ordinal class. (Contributed by NM, 11-May-1994.)
Assertion
Ref Expression
ord0  |-  Ord  (/)

Proof of Theorem ord0
StepHypRef Expression
1 tr0 4142 . 2  |-  Tr  (/)
2 ral0 3552 . 2  |-  A. x  e.  (/)  Tr  x
3 dford3 4402 . 2  |-  ( Ord  (/) 
<->  ( Tr  (/)  /\  A. x  e.  (/)  Tr  x
) )
41, 2, 3mpbir2an 944 1  |-  Ord  (/)
Colors of variables: wff set class
Syntax hints:   A.wral 2475   (/)c0 3450   Tr wtr 4131   Ord word 4397
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-v 2765  df-dif 3159  df-in 3163  df-ss 3170  df-nul 3451  df-pw 3607  df-uni 3840  df-tr 4132  df-iord 4401
This theorem is referenced by:  0elon  4427  ordtriexmidlem  4555  2ordpr  4560  smo0  6356
  Copyright terms: Public domain W3C validator