ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ord0 Unicode version

Theorem ord0 4368
Description: The empty set is an ordinal class. (Contributed by NM, 11-May-1994.)
Assertion
Ref Expression
ord0  |-  Ord  (/)

Proof of Theorem ord0
StepHypRef Expression
1 tr0 4090 . 2  |-  Tr  (/)
2 ral0 3509 . 2  |-  A. x  e.  (/)  Tr  x
3 dford3 4344 . 2  |-  ( Ord  (/) 
<->  ( Tr  (/)  /\  A. x  e.  (/)  Tr  x
) )
41, 2, 3mpbir2an 932 1  |-  Ord  (/)
Colors of variables: wff set class
Syntax hints:   A.wral 2443   (/)c0 3408   Tr wtr 4079   Ord word 4339
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2296  df-ral 2448  df-v 2727  df-dif 3117  df-in 3121  df-ss 3128  df-nul 3409  df-pw 3560  df-uni 3789  df-tr 4080  df-iord 4343
This theorem is referenced by:  0elon  4369  ordtriexmidlem  4495  2ordpr  4500  smo0  6262
  Copyright terms: Public domain W3C validator