ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ord0 Unicode version

Theorem ord0 4456
Description: The empty set is an ordinal class. (Contributed by NM, 11-May-1994.)
Assertion
Ref Expression
ord0  |-  Ord  (/)

Proof of Theorem ord0
StepHypRef Expression
1 tr0 4169 . 2  |-  Tr  (/)
2 ral0 3570 . 2  |-  A. x  e.  (/)  Tr  x
3 dford3 4432 . 2  |-  ( Ord  (/) 
<->  ( Tr  (/)  /\  A. x  e.  (/)  Tr  x
) )
41, 2, 3mpbir2an 945 1  |-  Ord  (/)
Colors of variables: wff set class
Syntax hints:   A.wral 2486   (/)c0 3468   Tr wtr 4158   Ord word 4427
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2189
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ral 2491  df-v 2778  df-dif 3176  df-in 3180  df-ss 3187  df-nul 3469  df-pw 3628  df-uni 3865  df-tr 4159  df-iord 4431
This theorem is referenced by:  0elon  4457  ordtriexmidlem  4585  2ordpr  4590  smo0  6407
  Copyright terms: Public domain W3C validator