| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ord0 | Unicode version | ||
| Description: The empty set is an ordinal class. (Contributed by NM, 11-May-1994.) |
| Ref | Expression |
|---|---|
| ord0 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tr0 4142 |
. 2
| |
| 2 | ral0 3552 |
. 2
| |
| 3 | dford3 4402 |
. 2
| |
| 4 | 1, 2, 3 | mpbir2an 944 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-v 2765 df-dif 3159 df-in 3163 df-ss 3170 df-nul 3451 df-pw 3607 df-uni 3840 df-tr 4132 df-iord 4401 |
| This theorem is referenced by: 0elon 4427 ordtriexmidlem 4555 2ordpr 4560 smo0 6356 |
| Copyright terms: Public domain | W3C validator |