Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > ord0 | Unicode version |
Description: The empty set is an ordinal class. (Contributed by NM, 11-May-1994.) |
Ref | Expression |
---|---|
ord0 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tr0 4099 | . 2 | |
2 | ral0 3517 | . 2 | |
3 | dford3 4353 | . 2 | |
4 | 1, 2, 3 | mpbir2an 938 | 1 |
Colors of variables: wff set class |
Syntax hints: wral 2449 c0 3415 wtr 4088 word 4348 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 610 ax-in2 611 ax-io 705 ax-5 1441 ax-7 1442 ax-gen 1443 ax-ie1 1487 ax-ie2 1488 ax-8 1498 ax-10 1499 ax-11 1500 ax-i12 1501 ax-bndl 1503 ax-4 1504 ax-17 1520 ax-i9 1524 ax-ial 1528 ax-i5r 1529 ax-ext 2153 |
This theorem depends on definitions: df-bi 116 df-tru 1352 df-nf 1455 df-sb 1757 df-clab 2158 df-cleq 2164 df-clel 2167 df-nfc 2302 df-ral 2454 df-v 2733 df-dif 3124 df-in 3128 df-ss 3135 df-nul 3416 df-pw 3569 df-uni 3798 df-tr 4089 df-iord 4352 |
This theorem is referenced by: 0elon 4378 ordtriexmidlem 4504 2ordpr 4509 smo0 6281 |
Copyright terms: Public domain | W3C validator |