| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ordom | Unicode version | ||
| Description: Omega is ordinal. Theorem 7.32 of [TakeutiZaring] p. 43. (Contributed by NM, 18-Oct-1995.) |
| Ref | Expression |
|---|---|
| ordom |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elnn 4672 |
. . . 4
| |
| 2 | 1 | gen2 1474 |
. . 3
|
| 3 | dftr2 4160 |
. . 3
| |
| 4 | 2, 3 | mpbir 146 |
. 2
|
| 5 | treq 4164 |
. . . 4
| |
| 6 | treq 4164 |
. . . 4
| |
| 7 | treq 4164 |
. . . 4
| |
| 8 | tr0 4169 |
. . . 4
| |
| 9 | suctr 4486 |
. . . . 5
| |
| 10 | 9 | a1i 9 |
. . . 4
|
| 11 | 5, 6, 7, 6, 8, 10 | finds 4666 |
. . 3
|
| 12 | 11 | rgen 2561 |
. 2
|
| 13 | dford3 4432 |
. 2
| |
| 14 | 4, 12, 13 | mpbir2an 945 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2180 ax-14 2181 ax-ext 2189 ax-sep 4178 ax-nul 4186 ax-pow 4234 ax-pr 4269 ax-un 4498 ax-iinf 4654 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ral 2491 df-rex 2492 df-v 2778 df-dif 3176 df-un 3178 df-in 3180 df-ss 3187 df-nul 3469 df-pw 3628 df-sn 3649 df-pr 3650 df-uni 3865 df-int 3900 df-tr 4159 df-iord 4431 df-suc 4436 df-iom 4657 |
| This theorem is referenced by: omelon2 4674 limom 4680 freccllem 6511 frecfcllem 6513 frecsuclem 6515 fict 6991 infnfi 7018 isinfinf 7020 hashinfuni 10959 hashinfom 10960 hashennn 10962 ennnfonelemrn 12905 ctinf 12916 |
| Copyright terms: Public domain | W3C validator |