| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ordom | Unicode version | ||
| Description: Omega is ordinal. Theorem 7.32 of [TakeutiZaring] p. 43. (Contributed by NM, 18-Oct-1995.) |
| Ref | Expression |
|---|---|
| ordom |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elnn 4698 |
. . . 4
| |
| 2 | 1 | gen2 1496 |
. . 3
|
| 3 | dftr2 4184 |
. . 3
| |
| 4 | 2, 3 | mpbir 146 |
. 2
|
| 5 | treq 4188 |
. . . 4
| |
| 6 | treq 4188 |
. . . 4
| |
| 7 | treq 4188 |
. . . 4
| |
| 8 | tr0 4193 |
. . . 4
| |
| 9 | suctr 4512 |
. . . . 5
| |
| 10 | 9 | a1i 9 |
. . . 4
|
| 11 | 5, 6, 7, 6, 8, 10 | finds 4692 |
. . 3
|
| 12 | 11 | rgen 2583 |
. 2
|
| 13 | dford3 4458 |
. 2
| |
| 14 | 4, 12, 13 | mpbir2an 948 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4202 ax-nul 4210 ax-pow 4258 ax-pr 4293 ax-un 4524 ax-iinf 4680 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-v 2801 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-pw 3651 df-sn 3672 df-pr 3673 df-uni 3889 df-int 3924 df-tr 4183 df-iord 4457 df-suc 4462 df-iom 4683 |
| This theorem is referenced by: omelon2 4700 limom 4706 freccllem 6548 frecfcllem 6550 frecsuclem 6552 fict 7030 infnfi 7057 isinfinf 7059 hashinfuni 10999 hashinfom 11000 hashennn 11002 ennnfonelemrn 12990 ctinf 13001 |
| Copyright terms: Public domain | W3C validator |