ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dftr4 Unicode version

Theorem dftr4 4146
Description: An alternate way of defining a transitive class. Definition of [Enderton] p. 71. (Contributed by NM, 29-Aug-1993.)
Assertion
Ref Expression
dftr4  |-  ( Tr  A  <->  A  C_  ~P A
)

Proof of Theorem dftr4
StepHypRef Expression
1 df-tr 4142 . 2  |-  ( Tr  A  <->  U. A  C_  A
)
2 sspwuni 4011 . 2  |-  ( A 
C_  ~P A  <->  U. A  C_  A )
31, 2bitr4i 187 1  |-  ( Tr  A  <->  A  C_  ~P A
)
Colors of variables: wff set class
Syntax hints:    <-> wb 105    C_ wss 3165   ~Pcpw 3615   U.cuni 3849   Tr wtr 4141
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-ext 2186
This theorem depends on definitions:  df-bi 117  df-tru 1375  df-nf 1483  df-sb 1785  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ral 2488  df-v 2773  df-in 3171  df-ss 3178  df-pw 3617  df-uni 3850  df-tr 4142
This theorem is referenced by:  tr0  4152  pwtr  4262  pw1on  7337
  Copyright terms: Public domain W3C validator