ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dftr4 Unicode version

Theorem dftr4 4121
Description: An alternate way of defining a transitive class. Definition of [Enderton] p. 71. (Contributed by NM, 29-Aug-1993.)
Assertion
Ref Expression
dftr4  |-  ( Tr  A  <->  A  C_  ~P A
)

Proof of Theorem dftr4
StepHypRef Expression
1 df-tr 4117 . 2  |-  ( Tr  A  <->  U. A  C_  A
)
2 sspwuni 3986 . 2  |-  ( A 
C_  ~P A  <->  U. A  C_  A )
31, 2bitr4i 187 1  |-  ( Tr  A  <->  A  C_  ~P A
)
Colors of variables: wff set class
Syntax hints:    <-> wb 105    C_ wss 3144   ~Pcpw 3590   U.cuni 3824   Tr wtr 4116
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2171
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ral 2473  df-v 2754  df-in 3150  df-ss 3157  df-pw 3592  df-uni 3825  df-tr 4117
This theorem is referenced by:  tr0  4127  pwtr  4237  pw1on  7256
  Copyright terms: Public domain W3C validator