ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  truni Unicode version

Theorem truni 4155
Description: The union of a class of transitive sets is transitive. Exercise 5(a) of [Enderton] p. 73. (Contributed by Scott Fenton, 21-Feb-2011.) (Proof shortened by Mario Carneiro, 26-Apr-2014.)
Assertion
Ref Expression
truni  |-  ( A. x  e.  A  Tr  x  ->  Tr  U. A )
Distinct variable group:    x, A

Proof of Theorem truni
StepHypRef Expression
1 triun 4154 . 2  |-  ( A. x  e.  A  Tr  x  ->  Tr  U_ x  e.  A  x )
2 uniiun 3980 . . 3  |-  U. A  =  U_ x  e.  A  x
3 treq 4147 . . 3  |-  ( U. A  =  U_ x  e.  A  x  ->  ( Tr  U. A  <->  Tr  U_ x  e.  A  x )
)
42, 3ax-mp 5 . 2  |-  ( Tr 
U. A  <->  Tr  U_ x  e.  A  x )
51, 4sylibr 134 1  |-  ( A. x  e.  A  Tr  x  ->  Tr  U. A )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105    = wceq 1372   A.wral 2483   U.cuni 3849   U_ciun 3926   Tr wtr 4141
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-ext 2186
This theorem depends on definitions:  df-bi 117  df-tru 1375  df-nf 1483  df-sb 1785  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ral 2488  df-rex 2489  df-v 2773  df-in 3171  df-ss 3178  df-uni 3850  df-iun 3928  df-tr 4142
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator