ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  truni Unicode version

Theorem truni 4172
Description: The union of a class of transitive sets is transitive. Exercise 5(a) of [Enderton] p. 73. (Contributed by Scott Fenton, 21-Feb-2011.) (Proof shortened by Mario Carneiro, 26-Apr-2014.)
Assertion
Ref Expression
truni  |-  ( A. x  e.  A  Tr  x  ->  Tr  U. A )
Distinct variable group:    x, A

Proof of Theorem truni
StepHypRef Expression
1 triun 4171 . 2  |-  ( A. x  e.  A  Tr  x  ->  Tr  U_ x  e.  A  x )
2 uniiun 3995 . . 3  |-  U. A  =  U_ x  e.  A  x
3 treq 4164 . . 3  |-  ( U. A  =  U_ x  e.  A  x  ->  ( Tr  U. A  <->  Tr  U_ x  e.  A  x )
)
42, 3ax-mp 5 . 2  |-  ( Tr 
U. A  <->  Tr  U_ x  e.  A  x )
51, 4sylibr 134 1  |-  ( A. x  e.  A  Tr  x  ->  Tr  U. A )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105    = wceq 1373   A.wral 2486   U.cuni 3864   U_ciun 3941   Tr wtr 4158
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2189
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ral 2491  df-rex 2492  df-v 2778  df-in 3180  df-ss 3187  df-uni 3865  df-iun 3943  df-tr 4159
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator