ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  truni Unicode version

Theorem truni 4117
Description: The union of a class of transitive sets is transitive. Exercise 5(a) of [Enderton] p. 73. (Contributed by Scott Fenton, 21-Feb-2011.) (Proof shortened by Mario Carneiro, 26-Apr-2014.)
Assertion
Ref Expression
truni  |-  ( A. x  e.  A  Tr  x  ->  Tr  U. A )
Distinct variable group:    x, A

Proof of Theorem truni
StepHypRef Expression
1 triun 4116 . 2  |-  ( A. x  e.  A  Tr  x  ->  Tr  U_ x  e.  A  x )
2 uniiun 3942 . . 3  |-  U. A  =  U_ x  e.  A  x
3 treq 4109 . . 3  |-  ( U. A  =  U_ x  e.  A  x  ->  ( Tr  U. A  <->  Tr  U_ x  e.  A  x )
)
42, 3ax-mp 5 . 2  |-  ( Tr 
U. A  <->  Tr  U_ x  e.  A  x )
51, 4sylibr 134 1  |-  ( A. x  e.  A  Tr  x  ->  Tr  U. A )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105    = wceq 1353   A.wral 2455   U.cuni 3811   U_ciun 3888   Tr wtr 4103
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-ext 2159
This theorem depends on definitions:  df-bi 117  df-tru 1356  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-rex 2461  df-v 2741  df-in 3137  df-ss 3144  df-uni 3812  df-iun 3890  df-tr 4104
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator