ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  truni Unicode version

Theorem truni 4094
Description: The union of a class of transitive sets is transitive. Exercise 5(a) of [Enderton] p. 73. (Contributed by Scott Fenton, 21-Feb-2011.) (Proof shortened by Mario Carneiro, 26-Apr-2014.)
Assertion
Ref Expression
truni  |-  ( A. x  e.  A  Tr  x  ->  Tr  U. A )
Distinct variable group:    x, A

Proof of Theorem truni
StepHypRef Expression
1 triun 4093 . 2  |-  ( A. x  e.  A  Tr  x  ->  Tr  U_ x  e.  A  x )
2 uniiun 3919 . . 3  |-  U. A  =  U_ x  e.  A  x
3 treq 4086 . . 3  |-  ( U. A  =  U_ x  e.  A  x  ->  ( Tr  U. A  <->  Tr  U_ x  e.  A  x )
)
42, 3ax-mp 5 . 2  |-  ( Tr 
U. A  <->  Tr  U_ x  e.  A  x )
51, 4sylibr 133 1  |-  ( A. x  e.  A  Tr  x  ->  Tr  U. A )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 104    = wceq 1343   A.wral 2444   U.cuni 3789   U_ciun 3866   Tr wtr 4080
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-rex 2450  df-v 2728  df-in 3122  df-ss 3129  df-uni 3790  df-iun 3868  df-tr 4081
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator