ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  treq Unicode version

Theorem treq 4086
Description: Equality theorem for the transitive class predicate. (Contributed by NM, 17-Sep-1993.)
Assertion
Ref Expression
treq  |-  ( A  =  B  ->  ( Tr  A  <->  Tr  B )
)

Proof of Theorem treq
StepHypRef Expression
1 unieq 3798 . . . 4  |-  ( A  =  B  ->  U. A  =  U. B )
21sseq1d 3171 . . 3  |-  ( A  =  B  ->  ( U. A  C_  A  <->  U. B  C_  A ) )
3 sseq2 3166 . . 3  |-  ( A  =  B  ->  ( U. B  C_  A  <->  U. B  C_  B ) )
42, 3bitrd 187 . 2  |-  ( A  =  B  ->  ( U. A  C_  A  <->  U. B  C_  B ) )
5 df-tr 4081 . 2  |-  ( Tr  A  <->  U. A  C_  A
)
6 df-tr 4081 . 2  |-  ( Tr  B  <->  U. B  C_  B
)
74, 5, 63bitr4g 222 1  |-  ( A  =  B  ->  ( Tr  A  <->  Tr  B )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 104    = wceq 1343    C_ wss 3116   U.cuni 3789   Tr wtr 4080
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-rex 2450  df-in 3122  df-ss 3129  df-uni 3790  df-tr 4081
This theorem is referenced by:  truni  4094  ordeq  4350  ordsucim  4477  ordom  4584  exmidonfinlem  7149
  Copyright terms: Public domain W3C validator