ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  treq Unicode version

Theorem treq 4068
Description: Equality theorem for the transitive class predicate. (Contributed by NM, 17-Sep-1993.)
Assertion
Ref Expression
treq  |-  ( A  =  B  ->  ( Tr  A  <->  Tr  B )
)

Proof of Theorem treq
StepHypRef Expression
1 unieq 3781 . . . 4  |-  ( A  =  B  ->  U. A  =  U. B )
21sseq1d 3157 . . 3  |-  ( A  =  B  ->  ( U. A  C_  A  <->  U. B  C_  A ) )
3 sseq2 3152 . . 3  |-  ( A  =  B  ->  ( U. B  C_  A  <->  U. B  C_  B ) )
42, 3bitrd 187 . 2  |-  ( A  =  B  ->  ( U. A  C_  A  <->  U. B  C_  B ) )
5 df-tr 4063 . 2  |-  ( Tr  A  <->  U. A  C_  A
)
6 df-tr 4063 . 2  |-  ( Tr  B  <->  U. B  C_  B
)
74, 5, 63bitr4g 222 1  |-  ( A  =  B  ->  ( Tr  A  <->  Tr  B )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 104    = wceq 1335    C_ wss 3102   U.cuni 3772   Tr wtr 4062
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1427  ax-7 1428  ax-gen 1429  ax-ie1 1473  ax-ie2 1474  ax-8 1484  ax-10 1485  ax-11 1486  ax-i12 1487  ax-bndl 1489  ax-4 1490  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2139
This theorem depends on definitions:  df-bi 116  df-tru 1338  df-nf 1441  df-sb 1743  df-clab 2144  df-cleq 2150  df-clel 2153  df-nfc 2288  df-rex 2441  df-in 3108  df-ss 3115  df-uni 3773  df-tr 4063
This theorem is referenced by:  truni  4076  ordeq  4332  ordsucim  4458  ordom  4565  exmidonfinlem  7123
  Copyright terms: Public domain W3C validator