![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > truni | GIF version |
Description: The union of a class of transitive sets is transitive. Exercise 5(a) of [Enderton] p. 73. (Contributed by Scott Fenton, 21-Feb-2011.) (Proof shortened by Mario Carneiro, 26-Apr-2014.) |
Ref | Expression |
---|---|
truni | ⊢ (∀𝑥 ∈ 𝐴 Tr 𝑥 → Tr ∪ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | triun 4114 | . 2 ⊢ (∀𝑥 ∈ 𝐴 Tr 𝑥 → Tr ∪ 𝑥 ∈ 𝐴 𝑥) | |
2 | uniiun 3940 | . . 3 ⊢ ∪ 𝐴 = ∪ 𝑥 ∈ 𝐴 𝑥 | |
3 | treq 4107 | . . 3 ⊢ (∪ 𝐴 = ∪ 𝑥 ∈ 𝐴 𝑥 → (Tr ∪ 𝐴 ↔ Tr ∪ 𝑥 ∈ 𝐴 𝑥)) | |
4 | 2, 3 | ax-mp 5 | . 2 ⊢ (Tr ∪ 𝐴 ↔ Tr ∪ 𝑥 ∈ 𝐴 𝑥) |
5 | 1, 4 | sylibr 134 | 1 ⊢ (∀𝑥 ∈ 𝐴 Tr 𝑥 → Tr ∪ 𝐴) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 105 = wceq 1353 ∀wral 2455 ∪ cuni 3809 ∪ ciun 3886 Tr wtr 4101 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-ext 2159 |
This theorem depends on definitions: df-bi 117 df-tru 1356 df-nf 1461 df-sb 1763 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ral 2460 df-rex 2461 df-v 2739 df-in 3135 df-ss 3142 df-uni 3810 df-iun 3888 df-tr 4102 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |