ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  truni GIF version

Theorem truni 4195
Description: The union of a class of transitive sets is transitive. Exercise 5(a) of [Enderton] p. 73. (Contributed by Scott Fenton, 21-Feb-2011.) (Proof shortened by Mario Carneiro, 26-Apr-2014.)
Assertion
Ref Expression
truni (∀𝑥𝐴 Tr 𝑥 → Tr 𝐴)
Distinct variable group:   𝑥,𝐴

Proof of Theorem truni
StepHypRef Expression
1 triun 4194 . 2 (∀𝑥𝐴 Tr 𝑥 → Tr 𝑥𝐴 𝑥)
2 uniiun 4018 . . 3 𝐴 = 𝑥𝐴 𝑥
3 treq 4187 . . 3 ( 𝐴 = 𝑥𝐴 𝑥 → (Tr 𝐴 ↔ Tr 𝑥𝐴 𝑥))
42, 3ax-mp 5 . 2 (Tr 𝐴 ↔ Tr 𝑥𝐴 𝑥)
51, 4sylibr 134 1 (∀𝑥𝐴 Tr 𝑥 → Tr 𝐴)
Colors of variables: wff set class
Syntax hints:  wi 4  wb 105   = wceq 1395  wral 2508   cuni 3887   ciun 3964  Tr wtr 4181
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-v 2801  df-in 3203  df-ss 3210  df-uni 3888  df-iun 3966  df-tr 4182
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator