![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > truni | GIF version |
Description: The union of a class of transitive sets is transitive. Exercise 5(a) of [Enderton] p. 73. (Contributed by Scott Fenton, 21-Feb-2011.) (Proof shortened by Mario Carneiro, 26-Apr-2014.) |
Ref | Expression |
---|---|
truni | ⊢ (∀𝑥 ∈ 𝐴 Tr 𝑥 → Tr ∪ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | triun 4129 | . 2 ⊢ (∀𝑥 ∈ 𝐴 Tr 𝑥 → Tr ∪ 𝑥 ∈ 𝐴 𝑥) | |
2 | uniiun 3955 | . . 3 ⊢ ∪ 𝐴 = ∪ 𝑥 ∈ 𝐴 𝑥 | |
3 | treq 4122 | . . 3 ⊢ (∪ 𝐴 = ∪ 𝑥 ∈ 𝐴 𝑥 → (Tr ∪ 𝐴 ↔ Tr ∪ 𝑥 ∈ 𝐴 𝑥)) | |
4 | 2, 3 | ax-mp 5 | . 2 ⊢ (Tr ∪ 𝐴 ↔ Tr ∪ 𝑥 ∈ 𝐴 𝑥) |
5 | 1, 4 | sylibr 134 | 1 ⊢ (∀𝑥 ∈ 𝐴 Tr 𝑥 → Tr ∪ 𝐴) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 105 = wceq 1364 ∀wral 2468 ∪ cuni 3824 ∪ ciun 3901 Tr wtr 4116 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2171 |
This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2176 df-cleq 2182 df-clel 2185 df-nfc 2321 df-ral 2473 df-rex 2474 df-v 2754 df-in 3150 df-ss 3157 df-uni 3825 df-iun 3903 df-tr 4117 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |