Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  truni GIF version

Theorem truni 4000
 Description: The union of a class of transitive sets is transitive. Exercise 5(a) of [Enderton] p. 73. (Contributed by Scott Fenton, 21-Feb-2011.) (Proof shortened by Mario Carneiro, 26-Apr-2014.)
Assertion
Ref Expression
truni (∀𝑥𝐴 Tr 𝑥 → Tr 𝐴)
Distinct variable group:   𝑥,𝐴

Proof of Theorem truni
StepHypRef Expression
1 triun 3999 . 2 (∀𝑥𝐴 Tr 𝑥 → Tr 𝑥𝐴 𝑥)
2 uniiun 3832 . . 3 𝐴 = 𝑥𝐴 𝑥
3 treq 3992 . . 3 ( 𝐴 = 𝑥𝐴 𝑥 → (Tr 𝐴 ↔ Tr 𝑥𝐴 𝑥))
42, 3ax-mp 7 . 2 (Tr 𝐴 ↔ Tr 𝑥𝐴 𝑥)
51, 4sylibr 133 1 (∀𝑥𝐴 Tr 𝑥 → Tr 𝐴)
 Colors of variables: wff set class Syntax hints:   → wi 4   ↔ wb 104   = wceq 1314  ∀wral 2390  ∪ cuni 3702  ∪ ciun 3779  Tr wtr 3986 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 681  ax-5 1406  ax-7 1407  ax-gen 1408  ax-ie1 1452  ax-ie2 1453  ax-8 1465  ax-10 1466  ax-11 1467  ax-i12 1468  ax-bndl 1469  ax-4 1470  ax-17 1489  ax-i9 1493  ax-ial 1497  ax-i5r 1498  ax-ext 2097 This theorem depends on definitions:  df-bi 116  df-tru 1317  df-nf 1420  df-sb 1719  df-clab 2102  df-cleq 2108  df-clel 2111  df-nfc 2244  df-ral 2395  df-rex 2396  df-v 2659  df-in 3043  df-ss 3050  df-uni 3703  df-iun 3781  df-tr 3987 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator