ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  truni GIF version

Theorem truni 4115
Description: The union of a class of transitive sets is transitive. Exercise 5(a) of [Enderton] p. 73. (Contributed by Scott Fenton, 21-Feb-2011.) (Proof shortened by Mario Carneiro, 26-Apr-2014.)
Assertion
Ref Expression
truni (∀𝑥𝐴 Tr 𝑥 → Tr 𝐴)
Distinct variable group:   𝑥,𝐴

Proof of Theorem truni
StepHypRef Expression
1 triun 4114 . 2 (∀𝑥𝐴 Tr 𝑥 → Tr 𝑥𝐴 𝑥)
2 uniiun 3940 . . 3 𝐴 = 𝑥𝐴 𝑥
3 treq 4107 . . 3 ( 𝐴 = 𝑥𝐴 𝑥 → (Tr 𝐴 ↔ Tr 𝑥𝐴 𝑥))
42, 3ax-mp 5 . 2 (Tr 𝐴 ↔ Tr 𝑥𝐴 𝑥)
51, 4sylibr 134 1 (∀𝑥𝐴 Tr 𝑥 → Tr 𝐴)
Colors of variables: wff set class
Syntax hints:  wi 4  wb 105   = wceq 1353  wral 2455   cuni 3809   ciun 3886  Tr wtr 4101
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-ext 2159
This theorem depends on definitions:  df-bi 117  df-tru 1356  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-rex 2461  df-v 2739  df-in 3135  df-ss 3142  df-uni 3810  df-iun 3888  df-tr 4102
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator