| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > trint | Unicode version | ||
| Description: The intersection of a class of transitive sets is transitive. Exercise 5(b) of [Enderton] p. 73. (Contributed by Scott Fenton, 25-Feb-2011.) |
| Ref | Expression |
|---|---|
| trint |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dftr3 4162 |
. . . . . 6
| |
| 2 | 1 | ralbii 2514 |
. . . . 5
|
| 3 | 2 | biimpi 120 |
. . . 4
|
| 4 | df-ral 2491 |
. . . . . 6
| |
| 5 | 4 | ralbii 2514 |
. . . . 5
|
| 6 | ralcom4 2799 |
. . . . 5
| |
| 7 | 5, 6 | bitri 184 |
. . . 4
|
| 8 | 3, 7 | sylib 122 |
. . 3
|
| 9 | ralim 2567 |
. . . 4
| |
| 10 | 9 | alimi 1479 |
. . 3
|
| 11 | 8, 10 | syl 14 |
. 2
|
| 12 | dftr3 4162 |
. . 3
| |
| 13 | df-ral 2491 |
. . . 4
| |
| 14 | vex 2779 |
. . . . . . 7
| |
| 15 | 14 | elint2 3906 |
. . . . . 6
|
| 16 | ssint 3915 |
. . . . . 6
| |
| 17 | 15, 16 | imbi12i 239 |
. . . . 5
|
| 18 | 17 | albii 1494 |
. . . 4
|
| 19 | 13, 18 | bitri 184 |
. . 3
|
| 20 | 12, 19 | bitri 184 |
. 2
|
| 21 | 11, 20 | sylibr 134 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2189 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ral 2491 df-v 2778 df-in 3180 df-ss 3187 df-uni 3865 df-int 3900 df-tr 4159 |
| This theorem is referenced by: onintonm 4583 |
| Copyright terms: Public domain | W3C validator |