| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > trint | Unicode version | ||
| Description: The intersection of a class of transitive sets is transitive. Exercise 5(b) of [Enderton] p. 73. (Contributed by Scott Fenton, 25-Feb-2011.) |
| Ref | Expression |
|---|---|
| trint |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dftr3 4145 |
. . . . . 6
| |
| 2 | 1 | ralbii 2511 |
. . . . 5
|
| 3 | 2 | biimpi 120 |
. . . 4
|
| 4 | df-ral 2488 |
. . . . . 6
| |
| 5 | 4 | ralbii 2511 |
. . . . 5
|
| 6 | ralcom4 2793 |
. . . . 5
| |
| 7 | 5, 6 | bitri 184 |
. . . 4
|
| 8 | 3, 7 | sylib 122 |
. . 3
|
| 9 | ralim 2564 |
. . . 4
| |
| 10 | 9 | alimi 1477 |
. . 3
|
| 11 | 8, 10 | syl 14 |
. 2
|
| 12 | dftr3 4145 |
. . 3
| |
| 13 | df-ral 2488 |
. . . 4
| |
| 14 | vex 2774 |
. . . . . . 7
| |
| 15 | 14 | elint2 3891 |
. . . . . 6
|
| 16 | ssint 3900 |
. . . . . 6
| |
| 17 | 15, 16 | imbi12i 239 |
. . . . 5
|
| 18 | 17 | albii 1492 |
. . . 4
|
| 19 | 13, 18 | bitri 184 |
. . 3
|
| 20 | 12, 19 | bitri 184 |
. 2
|
| 21 | 11, 20 | sylibr 134 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-ext 2186 |
| This theorem depends on definitions: df-bi 117 df-tru 1375 df-nf 1483 df-sb 1785 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ral 2488 df-v 2773 df-in 3171 df-ss 3178 df-uni 3850 df-int 3885 df-tr 4142 |
| This theorem is referenced by: onintonm 4564 |
| Copyright terms: Public domain | W3C validator |