| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > trint | Unicode version | ||
| Description: The intersection of a class of transitive sets is transitive. Exercise 5(b) of [Enderton] p. 73. (Contributed by Scott Fenton, 25-Feb-2011.) |
| Ref | Expression |
|---|---|
| trint |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dftr3 4135 |
. . . . . 6
| |
| 2 | 1 | ralbii 2503 |
. . . . 5
|
| 3 | 2 | biimpi 120 |
. . . 4
|
| 4 | df-ral 2480 |
. . . . . 6
| |
| 5 | 4 | ralbii 2503 |
. . . . 5
|
| 6 | ralcom4 2785 |
. . . . 5
| |
| 7 | 5, 6 | bitri 184 |
. . . 4
|
| 8 | 3, 7 | sylib 122 |
. . 3
|
| 9 | ralim 2556 |
. . . 4
| |
| 10 | 9 | alimi 1469 |
. . 3
|
| 11 | 8, 10 | syl 14 |
. 2
|
| 12 | dftr3 4135 |
. . 3
| |
| 13 | df-ral 2480 |
. . . 4
| |
| 14 | vex 2766 |
. . . . . . 7
| |
| 15 | 14 | elint2 3881 |
. . . . . 6
|
| 16 | ssint 3890 |
. . . . . 6
| |
| 17 | 15, 16 | imbi12i 239 |
. . . . 5
|
| 18 | 17 | albii 1484 |
. . . 4
|
| 19 | 13, 18 | bitri 184 |
. . 3
|
| 20 | 12, 19 | bitri 184 |
. 2
|
| 21 | 11, 20 | sylibr 134 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-v 2765 df-in 3163 df-ss 3170 df-uni 3840 df-int 3875 df-tr 4132 |
| This theorem is referenced by: onintonm 4553 |
| Copyright terms: Public domain | W3C validator |