| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > trint | Unicode version | ||
| Description: The intersection of a class of transitive sets is transitive. Exercise 5(b) of [Enderton] p. 73. (Contributed by Scott Fenton, 25-Feb-2011.) |
| Ref | Expression |
|---|---|
| trint |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dftr3 4146 |
. . . . . 6
| |
| 2 | 1 | ralbii 2512 |
. . . . 5
|
| 3 | 2 | biimpi 120 |
. . . 4
|
| 4 | df-ral 2489 |
. . . . . 6
| |
| 5 | 4 | ralbii 2512 |
. . . . 5
|
| 6 | ralcom4 2794 |
. . . . 5
| |
| 7 | 5, 6 | bitri 184 |
. . . 4
|
| 8 | 3, 7 | sylib 122 |
. . 3
|
| 9 | ralim 2565 |
. . . 4
| |
| 10 | 9 | alimi 1478 |
. . 3
|
| 11 | 8, 10 | syl 14 |
. 2
|
| 12 | dftr3 4146 |
. . 3
| |
| 13 | df-ral 2489 |
. . . 4
| |
| 14 | vex 2775 |
. . . . . . 7
| |
| 15 | 14 | elint2 3892 |
. . . . . 6
|
| 16 | ssint 3901 |
. . . . . 6
| |
| 17 | 15, 16 | imbi12i 239 |
. . . . 5
|
| 18 | 17 | albii 1493 |
. . . 4
|
| 19 | 13, 18 | bitri 184 |
. . 3
|
| 20 | 12, 19 | bitri 184 |
. 2
|
| 21 | 11, 20 | sylibr 134 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-ext 2187 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ral 2489 df-v 2774 df-in 3172 df-ss 3179 df-uni 3851 df-int 3886 df-tr 4143 |
| This theorem is referenced by: onintonm 4565 |
| Copyright terms: Public domain | W3C validator |