ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  un12 Unicode version

Theorem un12 3321
Description: A rearrangement of union. (Contributed by NM, 12-Aug-2004.)
Assertion
Ref Expression
un12  |-  ( A  u.  ( B  u.  C ) )  =  ( B  u.  ( A  u.  C )
)

Proof of Theorem un12
StepHypRef Expression
1 uncom 3307 . . 3  |-  ( A  u.  B )  =  ( B  u.  A
)
21uneq1i 3313 . 2  |-  ( ( A  u.  B )  u.  C )  =  ( ( B  u.  A )  u.  C
)
3 unass 3320 . 2  |-  ( ( A  u.  B )  u.  C )  =  ( A  u.  ( B  u.  C )
)
4 unass 3320 . 2  |-  ( ( B  u.  A )  u.  C )  =  ( B  u.  ( A  u.  C )
)
52, 3, 43eqtr3i 2225 1  |-  ( A  u.  ( B  u.  C ) )  =  ( B  u.  ( A  u.  C )
)
Colors of variables: wff set class
Syntax hints:    = wceq 1364    u. cun 3155
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-v 2765  df-un 3161
This theorem is referenced by:  un23  3322  un4  3323
  Copyright terms: Public domain W3C validator