ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  un12 Unicode version

Theorem un12 3362
Description: A rearrangement of union. (Contributed by NM, 12-Aug-2004.)
Assertion
Ref Expression
un12  |-  ( A  u.  ( B  u.  C ) )  =  ( B  u.  ( A  u.  C )
)

Proof of Theorem un12
StepHypRef Expression
1 uncom 3348 . . 3  |-  ( A  u.  B )  =  ( B  u.  A
)
21uneq1i 3354 . 2  |-  ( ( A  u.  B )  u.  C )  =  ( ( B  u.  A )  u.  C
)
3 unass 3361 . 2  |-  ( ( A  u.  B )  u.  C )  =  ( A  u.  ( B  u.  C )
)
4 unass 3361 . 2  |-  ( ( B  u.  A )  u.  C )  =  ( B  u.  ( A  u.  C )
)
52, 3, 43eqtr3i 2258 1  |-  ( A  u.  ( B  u.  C ) )  =  ( B  u.  ( A  u.  C )
)
Colors of variables: wff set class
Syntax hints:    = wceq 1395    u. cun 3195
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-v 2801  df-un 3201
This theorem is referenced by:  un23  3363  un4  3364
  Copyright terms: Public domain W3C validator