ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  un23 Unicode version

Theorem un23 3309
Description: A rearrangement of union. (Contributed by NM, 12-Aug-2004.) (Proof shortened by Andrew Salmon, 26-Jun-2011.)
Assertion
Ref Expression
un23  |-  ( ( A  u.  B )  u.  C )  =  ( ( A  u.  C )  u.  B
)

Proof of Theorem un23
StepHypRef Expression
1 unass 3307 . 2  |-  ( ( A  u.  B )  u.  C )  =  ( A  u.  ( B  u.  C )
)
2 un12 3308 . 2  |-  ( A  u.  ( B  u.  C ) )  =  ( B  u.  ( A  u.  C )
)
3 uncom 3294 . 2  |-  ( B  u.  ( A  u.  C ) )  =  ( ( A  u.  C )  u.  B
)
41, 2, 33eqtri 2214 1  |-  ( ( A  u.  B )  u.  C )  =  ( ( A  u.  C )  u.  B
)
Colors of variables: wff set class
Syntax hints:    = wceq 1364    u. cun 3142
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2171
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-v 2754  df-un 3148
This theorem is referenced by:  setscom  12555
  Copyright terms: Public domain W3C validator