![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > un12 | GIF version |
Description: A rearrangement of union. (Contributed by NM, 12-Aug-2004.) |
Ref | Expression |
---|---|
un12 | ⊢ (𝐴 ∪ (𝐵 ∪ 𝐶)) = (𝐵 ∪ (𝐴 ∪ 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | uncom 3279 | . . 3 ⊢ (𝐴 ∪ 𝐵) = (𝐵 ∪ 𝐴) | |
2 | 1 | uneq1i 3285 | . 2 ⊢ ((𝐴 ∪ 𝐵) ∪ 𝐶) = ((𝐵 ∪ 𝐴) ∪ 𝐶) |
3 | unass 3292 | . 2 ⊢ ((𝐴 ∪ 𝐵) ∪ 𝐶) = (𝐴 ∪ (𝐵 ∪ 𝐶)) | |
4 | unass 3292 | . 2 ⊢ ((𝐵 ∪ 𝐴) ∪ 𝐶) = (𝐵 ∪ (𝐴 ∪ 𝐶)) | |
5 | 2, 3, 4 | 3eqtr3i 2206 | 1 ⊢ (𝐴 ∪ (𝐵 ∪ 𝐶)) = (𝐵 ∪ (𝐴 ∪ 𝐶)) |
Colors of variables: wff set class |
Syntax hints: = wceq 1353 ∪ cun 3127 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-ext 2159 |
This theorem depends on definitions: df-bi 117 df-tru 1356 df-nf 1461 df-sb 1763 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-v 2739 df-un 3133 |
This theorem is referenced by: un23 3294 un4 3295 |
Copyright terms: Public domain | W3C validator |